energy_operators.py 18.1 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
from ..multi_domain import MultiDomain
from ..multi_field import MultiField
from ..sugar import makeDomain, makeOp
Philipp Arras's avatar
Philipp Arras committed
26
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
28
from .sampling_enabler import SamplingDtypeSetter, SamplingEnabler
29
from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
30
from .simple_linear_operators import VdotOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
36


def _check_sampling_dtype(domain, dtypes):
    if dtypes is None:
        return
    if isinstance(domain, DomainTuple):
Philipp Arras's avatar
Philipp Arras committed
37
38
        np.dtype(dtypes)
        return
Philipp Arras's avatar
Philipp Arras committed
39
    elif isinstance(domain, MultiDomain):
Philipp Arras's avatar
Philipp Arras committed
40
41
42
43
44
45
46
        if isinstance(dtypes, dict):
            for dt in dtypes.values():
                np.dtype(dt)
            if set(domain.keys()) == set(dtypes.keys()):
                return
        else:
            np.dtype(dtypes)
Philipp Arras's avatar
Philipp Arras committed
47
            return
Philipp Arras's avatar
Philipp Arras committed
48
    raise TypeError
Philipp Arras's avatar
Philipp Arras committed
49
50


51
52
53
54
def _iscomplex(dtype):
    return np.issubdtype(dtype, np.complexfloating)


Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
62
63
64
65
def _field_to_dtype(field):
    if isinstance(field, Field):
        dt = field.dtype
    elif isinstance(field, MultiField):
        dt = {kk: ff.dtype for kk, ff in field.items()}
    else:
        raise TypeError
    _check_sampling_dtype(field.domain, dt)
    return dt


Martin Reinecke's avatar
Martin Reinecke committed
66
class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
67
    """Operator which has a scalar domain as target domain.
68

Martin Reinecke's avatar
Martin Reinecke committed
69
    It is intended as an objective function for field inference.
70

Philipp Arras's avatar
Philipp Arras committed
71
72
73
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
74
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
75
       divergence.
76
    """
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    _target = DomainTuple.scalar_domain()


80
81
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
82

Philipp Arras's avatar
Philipp Arras committed
83
84
85
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
86
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
87
    """
Philipp Arras's avatar
Philipp Arras committed
88

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    def __init__(self, domain):
        self._domain = domain

Philipp Arras's avatar
Philipp Arras committed
92
    def apply(self, x):
93
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
94
95
        if x.jac is None:
            return x.vdot(x)
Philipp Arras's avatar
Philipp Arras committed
96
97
        res = x.val.vdot(x.val)
        return x.new(res, VdotOperator(2*x.val))
Martin Reinecke's avatar
Martin Reinecke committed
98

Martin Reinecke's avatar
Martin Reinecke committed
99

Martin Reinecke's avatar
Martin Reinecke committed
100
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
101
    """Computes the L2-norm of a Field or MultiField with respect to a
102
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
103
104
105

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
106
107
108

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
109
    endo : EndomorphicOperator
110
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
111
    """
Philipp Arras's avatar
Philipp Arras committed
112
113

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
114
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
115
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
116
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
117
118
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
119

Philipp Arras's avatar
Philipp Arras committed
120
    def apply(self, x):
121
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
122
        if x.jac is None:
Philipp Arras's avatar
Philipp Arras committed
123
124
125
            return 0.5*x.vdot(self._op(x))
        res = 0.5*x.val.vdot(self._op(x.val))
        return x.new(res, VdotOperator(self._op(x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
126

Philipp Arras's avatar
Philipp Arras committed
127

128
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
129
    """Computes the negative log pdf of a Gaussian with unknown covariance.
130

Reimar Leike's avatar
Reimar Leike committed
131
    The covariance is assumed to be diagonal.
132
133

    .. math ::
134
        E(s,D) = - \\log G(s, C) = 0.5 (s)^\\dagger C (s) - 0.5 tr log(C),
135
136

    an information energy for a Gaussian distribution with residual s and
137
    inverse diagonal covariance C.
Reimar Leike's avatar
Reimar Leike committed
138
139
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
140
141
142

    Parameters
    ----------
143
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
144
        domain of the residual and domain of the covariance diagonal.
145

146
    residual_key : key
Philipp Arras's avatar
Philipp Arras committed
147
        Residual key of the Gaussian.
148

149
    inverse_covariance_key : key
150
        Inverse covariance diagonal key of the Gaussian.
Philipp Arras's avatar
Philipp Arras committed
151

152
    sampling_dtype : np.dtype
Philipp Arras's avatar
Philipp Arras committed
153
        Data type of the samples. Usually either 'np.float*' or 'np.complex*'
154
155
    """

Philipp Arras's avatar
Philipp Arras committed
156
    def __init__(self, domain, residual_key, inverse_covariance_key, sampling_dtype):
Philipp Arras's avatar
Philipp Arras committed
157
158
        self._kr = str(residual_key)
        self._ki = str(inverse_covariance_key)
Philipp Arras's avatar
Philipp Arras committed
159
        dom = DomainTuple.make(domain)
Philipp Arras's avatar
Philipp Arras committed
160
        self._domain = MultiDomain.make({self._kr: dom, self._ki: dom})
Philipp Arras's avatar
Philipp Arras committed
161
162
        self._dt = {self._kr: sampling_dtype, self._ki: np.float64}
        _check_sampling_dtype(self._domain, self._dt)
163
        self._cplx = _iscomplex(sampling_dtype)
164

Philipp Arras's avatar
Philipp Arras committed
165
    def apply(self, x):
166
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
167
        r, i = x[self._kr], x[self._ki]
Philipp Arras's avatar
Philipp Arras committed
168
169
170
171
        if self._cplx:
            res = 0.5*r.vdot(r*i.real).real - i.ptw("log").sum()
        else:
            res = 0.5*(r.vdot(r*i) - i.ptw("log").sum())
Martin Reinecke's avatar
more    
Martin Reinecke committed
172
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
173
            return res
Philipp Arras's avatar
Philipp Arras committed
174
175
        met = i.val if self._cplx else 0.5*i.val
        met = MultiField.from_dict({self._kr: i.val, self._ki: met**(-2)})
Philipp Arras's avatar
Philipp Arras committed
176
        return res.add_metric(SamplingDtypeSetter(makeOp(met), self._dt))
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        from .simplify_for_const import ConstantEnergyOperator
        assert len(c_inp.keys()) == 1
        key = c_inp.keys()[0]
        assert key in self._domain.keys()
        cst = c_inp[key]
        if key == self._kr:
            res = _SpecialGammaEnergy(cst).ducktape(self._ki)
        else:
            dt = self._dt[self._kr]
            res = GaussianEnergy(inverse_covariance=makeOp(cst),
                                 sampling_dtype=dt).ducktape(self._kr)
            trlog = cst.log().sum().val_rw()
            if not _iscomplex(dt):
                trlog /= 2
            res = res + ConstantEnergyOperator(-trlog)
        res = res + ConstantEnergyOperator(0.)
        assert res.target is self.target
        return None, res
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217


class _SpecialGammaEnergy(EnergyOperator):
    def __init__(self, residual):
        self._domain = DomainTuple.make(residual.domain)
        self._resi = residual
        self._cplx = _iscomplex(self._resi.dtype)
        self._scale = ScalingOperator(self._domain, 1 if self._cplx else .5)

    def apply(self, x):
        self._check_input(x)
        r = self._resi
        if self._cplx:
            res = 0.5*(r*x.real).vdot(r).real - x.ptw("log").sum()
        else:
            res = 0.5*((r*x).vdot(r) - x.ptw("log").sum())
        if not x.want_metric:
            return res
        met = makeOp((self._scale(x.val))**(-2))
        return res.add_metric(SamplingDtypeSetter(met, self._resi.dtype))

Martin Reinecke's avatar
Martin Reinecke committed
218
219

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
220
    """Computes a negative-log Gaussian.
221

Philipp Arras's avatar
Philipp Arras committed
222
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
223

Philipp Arras's avatar
Philipp Arras committed
224
225
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
226

Philipp Arras's avatar
Philipp Arras committed
227
228
    an information energy for a Gaussian distribution with mean m and
    covariance D.
229

Philipp Arras's avatar
Philipp Arras committed
230
231
232
233
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
234
235
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
236
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
237
238
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified
Reimar Leike's avatar
Reimar Leike committed
239
    sampling_dtype : type
Martin Reinecke's avatar
Martin Reinecke committed
240
        Here one can specify whether the distribution is a complex Gaussian or
Reimar Leike's avatar
Reimar Leike committed
241
242
243
244
245
        not. Note that for a complex Gaussian the inverse_covariance is
        .. math ::
        (<ff^dagger>)^{-1}_P(f)/2,
        where the additional factor of 2 is necessary because the 
        domain of s has double as many dimensions as in the real case.
Philipp Arras's avatar
Philipp Arras committed
246
247
248
249

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
250
    """
Martin Reinecke's avatar
Martin Reinecke committed
251

Philipp Arras's avatar
Philipp Arras committed
252
    def __init__(self, mean=None, inverse_covariance=None, domain=None, sampling_dtype=None):
Martin Reinecke's avatar
Martin Reinecke committed
253
254
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
255
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
256
257
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
261
262
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
263
264
265
266
267
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Philipp Arras's avatar
Philipp Arras committed
268
269
270
271
272
273
274
275
276
277
278

        # Infer sampling dtype
        if self._mean is None:
            _check_sampling_dtype(self._domain, sampling_dtype)
        else:
            if sampling_dtype is None:
                sampling_dtype = _field_to_dtype(self._mean)
            else:
                if sampling_dtype != _field_to_dtype(self._mean):
                    raise ValueError("Sampling dtype and mean not compatible")

Philipp Arras's avatar
Philipp Arras committed
279
        self._icov = inverse_covariance
280
        if inverse_covariance is None:
281
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Philipp Arras's avatar
Philipp Arras committed
282
            self._met = ScalingOperator(self._domain, 1)
Martin Reinecke's avatar
Martin Reinecke committed
283
        else:
284
            self._op = QuadraticFormOperator(inverse_covariance)
Philipp Arras's avatar
Philipp Arras committed
285
            self._met = inverse_covariance
Philipp Arras's avatar
Philipp Arras committed
286
        if sampling_dtype is not None:
287
            self._met = SamplingDtypeSetter(self._met, sampling_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
288
289

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
290
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
291
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
292
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
293
        else:
Philipp Arras's avatar
Philipp Arras committed
294
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
295
296
                raise ValueError("domain mismatch")

Philipp Arras's avatar
Philipp Arras committed
297
    def apply(self, x):
298
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
299
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
300
        res = self._op(residual).real
Martin Reinecke's avatar
more    
Martin Reinecke committed
301
        if x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
302
303
            return res.add_metric(self._met)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
304

Philipp Arras's avatar
Philipp Arras committed
305
306
307
308
    def __repr__(self):
        dom = '()' if isinstance(self.domain, DomainTuple) else self.domain.keys()
        return f'GaussianEnergy {dom}'

Martin Reinecke's avatar
Martin Reinecke committed
309
310

class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
311
312
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
313

Philipp Arras's avatar
Philipp Arras committed
314
    Represents up to an f-independent term :math:`log(d!)`:
315

Philipp Arras's avatar
Philipp Arras committed
316
317
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
318

Philipp Arras's avatar
Philipp Arras committed
319
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
320
    the counts.
Philipp Arras's avatar
Philipp Arras committed
321
322
323
324
325
326

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
327
    """
Philipp Arras's avatar
Philipp Arras committed
328

329
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
330
331
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
332
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
333
            raise ValueError
334
335
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
336

Philipp Arras's avatar
Philipp Arras committed
337
    def apply(self, x):
338
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
339
        res = x.sum() - x.ptw("log").vdot(self._d)
Martin Reinecke's avatar
more    
Martin Reinecke committed
340
        if not x.want_metric:
341
            return res
342
        return res.add_metric(SamplingDtypeSetter(makeOp(1./x.val), np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
343

344

345
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
346
    """Computes the negative log-likelihood of the inverse gamma distribution.
347
348
349

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
350
351
352
353
354
355
356
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
357
358
359
360
361
362
363

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
364
    """
Philipp Arras's avatar
Philipp Arras committed
365

366
367
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
368
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
369
        self._domain = DomainTuple.make(beta.domain)
370
371
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
372
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
373
374
375
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
Philipp Arras's avatar
Philipp Arras committed
376
377
378
379
        if not self._beta.dtype == np.float64:
            # FIXME Add proper complex support for this energy
            raise TypeError
        self._sampling_dtype = _field_to_dtype(self._beta)
380

Philipp Arras's avatar
Philipp Arras committed
381
    def apply(self, x):
382
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
383
        res = x.ptw("log").vdot(self._alphap1) + x.ptw("reciprocal").vdot(self._beta)
Martin Reinecke's avatar
more    
Martin Reinecke committed
384
        if not x.want_metric:
385
            return res
Philipp Arras's avatar
Philipp Arras committed
386
387
        met = makeOp(self._alphap1/(x.val**2))
        if self._sampling_dtype is not None:
388
            met = SamplingDtypeSetter(met, self._sampling_dtype)
Philipp Arras's avatar
Philipp Arras committed
389
        return res.add_metric(met)
390
391


392
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
393
    """Computes likelihood energy corresponding to Student's t-distribution.
394
395

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
396
397
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
398

Philipp Arras's avatar
Philipp Arras committed
399
400
    where f is a field defined on `domain`. Assumes that the data is `float64`
    for sampling.
401
402
403

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
404
405
    domain : `Domain` or `DomainTuple`
        Domain of the operator
Reimar Leike's avatar
Reimar Leike committed
406
    theta : Scalar or Field
407
408
409
        Degree of freedom parameter for the student t distribution
    """

Philipp Arras's avatar
Philipp Arras committed
410
    def __init__(self, domain, theta):
411
412
413
        self._domain = DomainTuple.make(domain)
        self._theta = theta

Philipp Arras's avatar
Philipp Arras committed
414
    def apply(self, x):
415
        self._check_input(x)
416
        res = (((self._theta+1)/2)*(x**2/self._theta).ptw("log1p")).sum()
Martin Reinecke's avatar
more    
Martin Reinecke committed
417
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
418
            return res
419
        met = makeOp((self._theta+1) / (self._theta+3), self.domain)
Philipp Arras's avatar
Philipp Arras committed
420
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
421
422


Martin Reinecke's avatar
Martin Reinecke committed
423
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
424
    """Computes likelihood energy of expected event frequency constrained by
425
426
    event data.

Philipp Arras's avatar
Philipp Arras committed
427
428
429
430
431
432
433
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

434
435
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
436
    d : Field
Philipp Arras's avatar
Philipp Arras committed
437
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
438
    """
Philipp Arras's avatar
Philipp Arras committed
439

440
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
441
442
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
443
        if np.any(np.logical_and(d.val != 0, d.val != 1)):
Philipp Arras's avatar
Philipp Arras committed
444
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
445
        self._d = d
446
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
447

Philipp Arras's avatar
Philipp Arras committed
448
    def apply(self, x):
449
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
450
        res = -x.ptw("log").vdot(self._d) + (1.-x).ptw("log").vdot(self._d-1.)
Martin Reinecke's avatar
more    
Martin Reinecke committed
451
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
452
            return res
Philipp Arras's avatar
Philipp Arras committed
453
        met = makeOp(1./(x.val*(1. - x.val)))
454
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
455
456


457
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
458
459
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
460

Philipp Arras's avatar
Philipp Arras committed
461
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
462

Philipp Arras's avatar
Philipp Arras committed
463
464
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
465

Martin Reinecke's avatar
Martin Reinecke committed
466
    Other field priors can be represented via transformations of a white
467
468
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
469
    By implementing prior information this way, the field prior is represented
470
471
472
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
473
474
475
476
477
478
479
480
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
481
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
482
        to use to draw Gaussian samples.
Philipp Arras's avatar
Philipp Arras committed
483
484
    prior_dtype : numpy.dtype or dict of numpy.dtype, optional
        Data type of prior used for sampling.
Philipp Arras's avatar
Philipp Arras committed
485
486
487
488
489

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
490
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
491
    """
Philipp Arras's avatar
Philipp Arras committed
492

493
    def __init__(self, lh, ic_samp=None, prior_dtype=np.float64):
Martin Reinecke's avatar
Martin Reinecke committed
494
        self._lh = lh
Philipp Arras's avatar
Philipp Arras committed
495
        self._prior = GaussianEnergy(domain=lh.domain, sampling_dtype=prior_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
496
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
497
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
498

Philipp Arras's avatar
Philipp Arras committed
499
    def apply(self, x):
500
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
501
        if not x.want_metric or self._ic_samp is None:
Philipp Arras's avatar
Philipp Arras committed
502
            return (self._lh + self._prior)(x)
Philipp Arras's avatar
Philipp Arras committed
503
504
        lhx, prx = self._lh(x), self._prior(x)
        return (lhx+prx).add_metric(SamplingEnabler(lhx.metric, prx.metric, self._ic_samp))
Martin Reinecke's avatar
Martin Reinecke committed
505

Philipp Arras's avatar
Philipp Arras committed
506
507
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
508
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
509
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
510

511
512
513
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp)
514

Martin Reinecke's avatar
Martin Reinecke committed
515

Martin Reinecke's avatar
Martin Reinecke committed
516
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
517
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
518

519
520
521
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
522
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
523
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
524
525
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
526

Philipp Arras's avatar
Docs    
Philipp Arras committed
527
528
529
530
531
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
532

Philipp Arras's avatar
Docs    
Philipp Arras committed
533
534
535
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
536
    """
Martin Reinecke's avatar
Martin Reinecke committed
537
538
539

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
540
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
541
542
        self._res_samples = tuple(res_samples)

Philipp Arras's avatar
Philipp Arras committed
543
    def apply(self, x):
544
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
545
546
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap)/len(self._res_samples)