plot.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
20
from __future__ import division
import numpy as np
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
21
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace, dobj
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
25
26
27
28
29
30
31
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
32
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
33

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
36
37
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
38
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
53

Martin Reinecke's avatar
Martin Reinecke committed
54
55
56
57
58
59
60
61
62
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
63

Martin Reinecke's avatar
Martin Reinecke committed
64
def _makeplot(name):
65
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
66
    if dobj.rank != 0:
67
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
68
        return
Martin Reinecke's avatar
Martin Reinecke committed
69
70
    if name is None:
        plt.show()
71
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
72
73
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
74
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
75
76
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
77
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
78
79
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
80
81
82
83
84
85
86
87
88
89
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
90
91
92
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
95
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
96
    x1, x2, y1, y2 = plt.axis()
Martin Reinecke's avatar
Martin Reinecke committed
97
98
99
100
    x1 = _get_kw("xmin", x1, **kwargs)
    x2 = _get_kw("xmax", x2, **kwargs)
    y1 = _get_kw("ymin", y1, **kwargs)
    y2 = _get_kw("xmax", y2, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
101
102
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
103

Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
112
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
159
160
161

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
162
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
163
164
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
165
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167

Martin Reinecke's avatar
Martin Reinecke committed
168
def _get_kw(kwname, kwdefault=None, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
169
170
171
    if kwargs.get(kwname) is not None:
        return kwargs.get(kwname)
    return kwdefault
Martin Reinecke's avatar
Martin Reinecke committed
172
173


Martin Reinecke's avatar
Martin Reinecke committed
174
def plot(f, **kwargs):
175
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
176
    _register_cmaps()
177
178
179
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
180
        raise TypeError("incorrect data type")
181
182
183
184
185
186
187
188
189
190
191
192
193
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape)==1)):
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
194

Martin Reinecke's avatar
Martin Reinecke committed
195
196
197
198
199
200
    label = _get_kw("label", None, **kwargs)
    if label is None:
        label = [None] * len(f)
    if not isinstance (label, list):
        label = [label]

201
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
202
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
203
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
204

Martin Reinecke's avatar
Martin Reinecke committed
205
206
    xsize = _get_kw("xsize", 6, **kwargs)
    ysize = _get_kw("ysize", 6, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
207
    fig.set_size_inches(xsize, ysize)
Martin Reinecke's avatar
Martin Reinecke committed
208
209
210
211
    ax.set_title(_get_kw("title", "", **kwargs))
    ax.set_xlabel(_get_kw("xlabel", "", **kwargs))
    ax.set_ylabel(_get_kw("ylabel", "", **kwargs))
    cmap = _get_kw("colormap", plt.rcParams['image.cmap'], **kwargs)
Philipp Arras's avatar
Philipp Arras committed
212
213
214
    unit = kwargs.get('xunit')
    if not unit:
        unit = 1.
Martin Reinecke's avatar
Martin Reinecke committed
215
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
216
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
217
218
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
219
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
220
            for i, fld in enumerate(f):
221
                ycoord = dobj.to_global_data(fld.val)
Martin Reinecke's avatar
Martin Reinecke committed
222
                plt.plot(xcoord, ycoord,label=label[i])
Martin Reinecke's avatar
Martin Reinecke committed
223
            _limit_xy(**kwargs)
224
225
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
226
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
227
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
228
        elif len(dom.shape) == 2:
229
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
230
231
232
233
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
234
235
            xc = np.arange(nx, dtype=np.float64)*dx/unit
            yc = np.arange(ny, dtype=np.float64)*dy/unit
Martin Reinecke's avatar
Martin Reinecke committed
236
237
            im = ax.imshow(dobj.to_global_data(f.val),
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
238
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
239
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
240
241
242
243
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
244
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
245
246
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
247
248
249
250
251
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
252
        xcoord = dom.k_lengths / unit
Martin Reinecke's avatar
Martin Reinecke committed
253
        for i, fld in enumerate(f):
254
            ycoord = dobj.to_global_data(fld.val)
Martin Reinecke's avatar
Martin Reinecke committed
255
            plt.plot(xcoord, ycoord, label=label[i])
Martin Reinecke's avatar
Martin Reinecke committed
256
        _limit_xy(**kwargs)
257
258
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
259
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
260
261
        return
    elif isinstance(dom, HPSpace):
262
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
263
264
265
266
267
268
269
270
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.val.size//12)), "RING")
Martin Reinecke's avatar
Martin Reinecke committed
271
        res[mask] = dobj.to_global_data(f.val)[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
272
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
273
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
274
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
275
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
276
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
277
278
        return
    elif isinstance(dom, GLSpace):
279
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
280
281
282
283
284
285
286
287
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
Martin Reinecke committed
288
        res[mask] = dobj.to_global_data(f.val)[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
289
290

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
291
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
292
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
293
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
294
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
295
296
297
        return

    raise ValueError("Field type not(yet) supported")