correlated_fields.py 15.5 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
35
from ..sugar import from_global_data, full, makeDomain
36

Philipp Arras's avatar
Philipp Arras committed
37

38
39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43
44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

Philipp Arras's avatar
Philipp Arras committed
46
47
48
49
50
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
51
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
52
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
53
54
55
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
56
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
57
58
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
59
60
61
62
63
64
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
65
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
66
67


Philipp Arras's avatar
Philipp Arras committed
68
69
70
71
72
73
74
75
def _log_vol(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Arras's avatar
Philipp Arras committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class _LognormalMomentMatching(Operator):
    def __init__(self, mean, sig, key):
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain, self._target = op.domain, op.target
        self.apply = op.apply

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._sig


Philipp Frank's avatar
Philipp Frank committed
95
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
96
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
97
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
98
99
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
100
        logkl = _relative_log_k_lengths(self._domain)
101
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
102
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
103

104
105
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
106
107
        x = x.to_global_data()
        if mode == self.TIMES:
108
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
109
        else:
110
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
111
112
            res += x
            res[-1] -= (x*self._sc).sum()
113
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
114

115

Philipp Arras's avatar
Philipp Arras committed
116
117
118
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
119
120
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
121
122
123
124
125
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
126
        self._log_vol = _log_vol(self._target[0])
Philipp Arras's avatar
Philipp Arras committed
127
128
129
130
131
132

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
Philipp Arras's avatar
Philipp Arras committed
133
            res[0] = res[1] = 0
Philipp Arras's avatar
Philipp Arras committed
134
            res[2:] = np.cumsum(x[1])
Philipp Arras's avatar
Philipp Arras committed
135
            res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0]
Philipp Arras's avatar
Philipp Arras committed
136
137
138
139
140
141
142
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
Philipp Arras's avatar
Philipp Arras committed
143
            x[2:] *= self._log_vol/2.
144
145
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
146
147
148
149
150
151
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
152
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
153
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
173
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
174
175
176
177
178
179
180
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


181
182
183
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
Philipp Arras's avatar
Philipp Arras committed
199
200
201
202
203
204
205
        dom = twolog.domain
        shp = dom.shape
        totvol = target[0].harmonic_partner.get_default_codomain().total_volume

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target))
Philipp Arras's avatar
Philipp Arras committed
206
        vflex = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
207
208
209

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
Philipp Arras's avatar
Philipp Arras committed
210
        vasp = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
211
212
213
214
215

        foo = np.ones(shp)
        foo[0] = _log_vol(target)**2/12.
        shift = from_global_data(dom, foo)

Philipp Arras's avatar
Philipp Arras committed
216
        vslope = from_global_data(target, _relative_log_k_lengths(target))
Philipp Arras's avatar
Philipp Arras committed
217

Philipp Frank's avatar
fixup    
Philipp Frank committed
218
        foo, bar = [np.zeros(target.shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
219
220
        bar[1:] = foo[0] = totvol
        vol0, vol1 = [from_global_data(target, aa) for aa in (foo, bar)]
Philipp Arras's avatar
Philipp Arras committed
221
222
        # End prepare constant fields

Philipp Arras's avatar
Philipp Arras committed
223
224
225
        slope = VdotOperator(vslope).adjoint @ loglogavgslope
        sig_flex = VdotOperator(vflex).adjoint @ flexibility
        sig_asp = VdotOperator(vasp).adjoint @ asperity
Philipp Arras's avatar
Philipp Arras committed
226
227
228
        sig_fluc = VdotOperator(vol1).adjoint @ fluctuations

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
229
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
Philipp Arras's avatar
Philipp Arras committed
230
231
232
233
        smooth = _SlopeRemover(target) @ twolog @ (sigma*xi)
        op = _Normalization(target) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*op)

Philipp Arras's avatar
Philipp Arras committed
234
        self.apply = op.apply
235
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
236
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
237

238
239
240
241

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
242
        self._azm = None
243
244
245
246
247
248
249
250
251
252
253

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
254
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
255
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

Philipp Arras's avatar
Philipp Arras committed
273
274
275
276
277
278
279
        fluct = _LognormalMomentMatching(fluctuations_mean,
                                         fluctuations_stddev,
                                         prefix + 'fluctuations')
        flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
                                        prefix + 'flexibility')
        asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
                                       prefix + 'asperity')
280
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
281
                        prefix + 'loglogavgslope')
282
283
284
285
286
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
287
288
289

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
290
        self._azm = zeromode
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
313

314
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
315
316
317
318

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
319
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
320
321
322
323
324
325
326
327
328
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
329
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
330
            offset = float(offset)
Philipp Arras's avatar
Philipp Arras committed
331
332
333
        azm = _LognormalMomentMatching(offset_amplitude_mean,
                                       offset_amplitude_stddev,
                                       prefix + 'zeromode')
334
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
335
336
337

    @property
    def amplitudes(self):
338
        return self._a
339

340
341
342
343
344
345
346
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
347
            raise NotImplementedError
348
349
350
351
352
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
353
354
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
355

Philipp Arras's avatar
Philipp Arras committed
356
    def slice_fluctuation(self, space):
357
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
358
            raise NotImplementedError
359
360
361
362
363
364
365
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
366
                q = q*fl**2
367
            else:
Philipp Arras's avatar
Philipp Arras committed
368
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
369
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
370
371

    def average_fluctuation(self, space):
372
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
373
            raise NotImplementedError
374
375
376
377
378
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
379
    def average_fluctuation_realized(self, samples, space):
380
381
382
383
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
384
        spaces = ()
385
386
387
388
389
390
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
391
            res = res + (r - r.mean())**2
392
393
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
394
395

    def slice_fluctuation_realized(self, samples, space):
396
397
398
399
400
401
402
403
404
405
406
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
407
        res = res1.mean() - res2.mean()
408
409
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
410
    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
411
412
413
414
415
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
416
417
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
418
419
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
420
        return fluctuations_slice_mean/scm
Philipp Arras's avatar
Philipp Arras committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    @staticmethod
    def offset_amplitude_realized(samples):
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))

    @staticmethod
    def total_fluctuation_realized(samples):
        res = 0.
        for s in samples:
            res = res + (s - s.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())

    @staticmethod
    def stats(op, samples):
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()