correlated_fields.py 15.5 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31 32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
35
from ..sugar import from_global_data, full, makeDomain
36

Philipp Arras's avatar
Philipp Arras committed
37

38 39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40 41 42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43 44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

Philipp Arras's avatar
Philipp Arras committed
46 47 48 49 50
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
51
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
52
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
53 54 55
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
56
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
57 58
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
59 60 61 62 63 64
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
65
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
66 67


Philipp Arras's avatar
Philipp Arras committed
68 69 70 71 72 73 74 75
def _log_vol(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Arras's avatar
Philipp Arras committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class _LognormalMomentMatching(Operator):
    def __init__(self, mean, sig, key):
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain, self._target = op.domain, op.target
        self.apply = op.apply

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._sig


Philipp Frank's avatar
Philipp Frank committed
95
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
96
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
97
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
98 99
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
100
        logkl = _relative_log_k_lengths(self._domain)
101
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
102
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
103

104 105
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
106 107
        x = x.to_global_data()
        if mode == self.TIMES:
108
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
109
        else:
110
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
111 112
            res += x
            res[-1] -= (x*self._sc).sum()
113
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
114

115

Philipp Arras's avatar
Philipp Arras committed
116 117 118
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
119 120
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
121 122 123 124 125
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
126
        self._log_vol = _log_vol(self._target[0])
Philipp Arras's avatar
Philipp Arras committed
127 128 129 130 131 132

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
Philipp Arras's avatar
Philipp Arras committed
133
            res[0] = res[1] = 0
Philipp Arras's avatar
Philipp Arras committed
134
            res[2:] = np.cumsum(x[1])
Philipp Arras's avatar
Philipp Arras committed
135
            res[2:] = (res[2:] + res[1:-1])/2*self._log_vol + x[0]
Philipp Arras's avatar
Philipp Arras committed
136 137 138 139 140 141 142
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
Philipp Arras's avatar
Philipp Arras committed
143
            x[2:] *= self._log_vol/2.
144 145
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
146 147 148 149 150 151
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
152
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
153
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
173
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
174 175 176 177 178 179 180
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


181 182 183
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
Philipp Arras's avatar
Philipp Arras committed
199 200 201 202 203 204 205
        dom = twolog.domain
        shp = dom.shape
        totvol = target[0].harmonic_partner.get_default_codomain().total_volume

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target))
Philipp Arras's avatar
Philipp Arras committed
206
        vflex = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
207 208 209

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
Philipp Arras's avatar
Philipp Arras committed
210
        vasp = from_global_data(dom, foo)
Philipp Arras's avatar
Philipp Arras committed
211 212 213 214 215

        foo = np.ones(shp)
        foo[0] = _log_vol(target)**2/12.
        shift = from_global_data(dom, foo)

Philipp Arras's avatar
Philipp Arras committed
216
        vslope = from_global_data(target, _relative_log_k_lengths(target))
Philipp Arras's avatar
Philipp Arras committed
217

Philipp Frank's avatar
fixup  
Philipp Frank committed
218
        foo, bar = [np.zeros(target.shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
219 220
        bar[1:] = foo[0] = totvol
        vol0, vol1 = [from_global_data(target, aa) for aa in (foo, bar)]
Philipp Arras's avatar
Philipp Arras committed
221 222
        # End prepare constant fields

Philipp Arras's avatar
Philipp Arras committed
223 224 225
        slope = VdotOperator(vslope).adjoint @ loglogavgslope
        sig_flex = VdotOperator(vflex).adjoint @ flexibility
        sig_asp = VdotOperator(vasp).adjoint @ asperity
Philipp Arras's avatar
Philipp Arras committed
226 227 228
        sig_fluc = VdotOperator(vol1).adjoint @ fluctuations

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
229
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
Philipp Arras's avatar
Philipp Arras committed
230 231 232 233
        smooth = _SlopeRemover(target) @ twolog @ (sigma*xi)
        op = _Normalization(target) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*op)

Philipp Arras's avatar
Philipp Arras committed
234
        self.apply = op.apply
235
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
236
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
237

238 239 240 241

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
242
        self._azm = None
243 244 245 246 247 248 249 250 251 252 253

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
254
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
255
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

Philipp Arras's avatar
Philipp Arras committed
273 274 275 276 277 278 279
        fluct = _LognormalMomentMatching(fluctuations_mean,
                                         fluctuations_stddev,
                                         prefix + 'fluctuations')
        flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
                                        prefix + 'flexibility')
        asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
                                       prefix + 'asperity')
280
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
281
                        prefix + 'loglogavgslope')
282 283 284 285 286
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
287 288 289

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
290
        self._azm = zeromode
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
313

314
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
315 316 317 318

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
319
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
320 321 322 323 324 325 326 327 328
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
329
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
330
            offset = float(offset)
Philipp Arras's avatar
Philipp Arras committed
331 332 333
        azm = _LognormalMomentMatching(offset_amplitude_mean,
                                       offset_amplitude_stddev,
                                       prefix + 'zeromode')
334
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
335 336 337

    @property
    def amplitudes(self):
338
        return self._a
339

340 341 342 343 344 345 346
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
347
            raise NotImplementedError
348 349 350 351 352
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
353 354
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
355

Philipp Arras's avatar
Philipp Arras committed
356
    def slice_fluctuation(self, space):
357
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
358
            raise NotImplementedError
359 360 361 362 363 364 365
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
366
                q = q*fl**2
367
            else:
Philipp Arras's avatar
Philipp Arras committed
368
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
369
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
370 371

    def average_fluctuation(self, space):
372
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
373
            raise NotImplementedError
374 375 376 377 378
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
379
    def average_fluctuation_realized(self, samples, space):
380 381 382 383
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
384
        spaces = ()
385 386 387 388 389 390
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
391
            res = res + (r - r.mean())**2
392 393
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
394 395

    def slice_fluctuation_realized(self, samples, space):
396 397 398 399 400 401 402 403 404 405 406
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
407
        res = res1.mean() - res2.mean()
408 409
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
410
    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
411 412 413 414 415
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
416 417
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
418 419
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
420
        return fluctuations_slice_mean/scm
Philipp Arras's avatar
Philipp Arras committed
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

    @staticmethod
    def offset_amplitude_realized(samples):
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))

    @staticmethod
    def total_fluctuation_realized(samples):
        res = 0.
        for s in samples:
            res = res + (s - s.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())

    @staticmethod
    def stats(op, samples):
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()