gl_space.py 5.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19 20
from __future__ import division

Jait Dixit's avatar
Jait Dixit committed
21
import itertools
csongor's avatar
csongor committed
22 23
import numpy as np

24
from nifty.spaces.space import Space
25
from nifty.config import dependency_injector as gdi
26

Theo Steininger's avatar
Theo Steininger committed
27 28 29
pyHealpix = gdi.get('pyHealpix')


Theo Steininger's avatar
Theo Steininger committed
30
class GLSpace(Space):
csongor's avatar
csongor committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
45 46
            Number of latitudinal bins (or rings) that are used for this
            pixelization.
47
        nlon : int, *optional*
48
            Number of longitudinal bins that are used for this pixelization.
49

50
        Attributes
csongor's avatar
csongor committed
51
        ----------
52 53 54 55
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
csongor's avatar
csongor committed
56
        nlat : int
57 58
            Number of latitudinal bins (or rings) that are used for this
            pixelization.
59
        nlon : int
60
            Number of longitudinal bins that are used for this pixelization.
61 62 63 64
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
csongor's avatar
csongor committed
65

Theo Steininger's avatar
Theo Steininger committed
66 67 68 69 70 71 72
        Raises
        ------
        ValueError
            If input `nlat` or `nlon` is invalid.
        ImportError
            If the pyHealpix module is not available

csongor's avatar
csongor committed
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

    """

89 90
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
91
    def __init__(self, nlat, nlon=None):
92
        if pyHealpix is None:
Theo Steininger's avatar
Theo Steininger committed
93 94
            raise ImportError(
                "The module pyHealpix is needed but not available.")
95

Martin Reinecke's avatar
Martin Reinecke committed
96
        super(GLSpace, self).__init__()
csongor's avatar
csongor committed
97

98 99
        self._nlat = self._parse_nlat(nlat)
        self._nlon = self._parse_nlon(nlon)
csongor's avatar
csongor committed
100

101
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
102

103 104 105
    def __repr__(self):
        return ("GLSpace(nlat=%r, nlon=%r)" % (self.nlat, self.nlon))

106 107 108
    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
109 110 111

    @property
    def shape(self):
112
        return (np.int((self.nlat * self.nlon)),)
csongor's avatar
csongor committed
113

114
    @property
115
    def dim(self):
116
        return np.int((self.nlat * self.nlon))
117 118 119 120

    @property
    def total_volume(self):
        return 4 * np.pi
121

122 123
    def copy(self):
        return self.__class__(nlat=self.nlat,
Martin Reinecke's avatar
Martin Reinecke committed
124
                              nlon=self.nlon)
125

Jait Dixit's avatar
Jait Dixit committed
126
    def weight(self, x, power=1, axes=None, inplace=False):
127 128
        nlon = self.nlon
        nlat = self.nlat
129
        vol = pyHealpix.GL_weights(nlat, nlon) ** np.float(power)
130
        weight = np.array(list(itertools.chain.from_iterable(
Theo Steininger's avatar
Theo Steininger committed
131
                          itertools.repeat(x, nlon) for x in vol)))
Jait Dixit's avatar
Jait Dixit committed
132 133 134

        if axes is not None:
            # reshape the weight array to match the input shape
135
            new_shape = np.ones(len(x.shape), dtype=np.int)
136 137
            # we know len(axes) is always 1
            new_shape[axes[0]] = len(weight)
Jait Dixit's avatar
Jait Dixit committed
138 139 140 141 142
            weight = weight.reshape(new_shape)

        if inplace:
            x *= weight
            result_x = x
csongor's avatar
csongor committed
143
        else:
Jait Dixit's avatar
Jait Dixit committed
144
            result_x = x * weight
csongor's avatar
csongor committed
145

Jait Dixit's avatar
Jait Dixit committed
146
        return result_x
147

148
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
149
        raise NotImplementedError
150

151
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
152
        raise NotImplementedError
153

154 155 156 157
    # ---Added properties and methods---

    @property
    def nlat(self):
Theo Steininger's avatar
Theo Steininger committed
158 159
        """ Number of latitudinal bins (or rings) that are used for this
        pixelization.
160
        """
Theo Steininger's avatar
Theo Steininger committed
161

162 163 164 165
        return self._nlat

    @property
    def nlon(self):
166
        """ Number of longitudinal bins that are used for this pixelization.
167
        """
Theo Steininger's avatar
Theo Steininger committed
168

169 170 171 172
        return self._nlon

    def _parse_nlat(self, nlat):
        nlat = int(nlat)
173 174 175
        if nlat < 1:
            raise ValueError(
                "nlat must be a positive number.")
176 177 178 179 180 181 182
        return nlat

    def _parse_nlon(self, nlon):
        if nlon is None:
            nlon = 2 * self.nlat - 1
        else:
            nlon = int(nlon)
183 184
            if nlon < 1:
                raise ValueError("nlon must be a positive number.")
185
        return nlon
186 187 188 189

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
190 191 192
        hdf5_group['nlat'] = self.nlat
        hdf5_group['nlon'] = self.nlon

193 194 195
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
196
    def _from_hdf5(cls, hdf5_group, repository):
197
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
198 199 200 201
            nlat=hdf5_group['nlat'][()],
            nlon=hdf5_group['nlon'][()],
            )

202
        return result