rg_transforms.py 24.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
20
21
22
import warnings

import numpy as np
from d2o import distributed_data_object, STRATEGIES
23
from nifty.config import dependency_injector as gdi
24
import nifty.nifty_utilities as utilities
25

26
from keepers import Loggable
27

Martin Reinecke's avatar
Martin Reinecke committed
28
29
fftw_mpi = gdi.get('fftw_mpi')
fftw_scalar = gdi.get('fftw_scalar')
30
31


32
class Transform(Loggable, object):
Jait Dixit's avatar
Jait Dixit committed
33
34
35
36
    """
        A generic fft object without any implementation.
    """

37
    def __init__(self, domain, codomain):
Jait Dixit's avatar
Jait Dixit committed
38
39
        self.domain = domain
        self.codomain = codomain
40

Jait Dixit's avatar
Jait Dixit committed
41
42
43
44
45
        # initialize the dictionary which stores the values from
        # get_centering_mask
        self.centering_mask_dict = {}

    def get_centering_mask(self, to_center_input, dimensions_input,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
                           offset_input=False):
        """
            Computes the mask, used to (de-)zerocenter domain and target
            fields.

            Parameters
            ----------
            to_center_input : tuple, list, numpy.ndarray
                A tuple of booleans which dimensions should be
                zero-centered.

            dimensions_input : tuple, list, numpy.ndarray
                A tuple containing the mask's desired shape.

            offset_input : int, boolean
                Specifies whether the zero-th dimension starts with an odd
                or and even index, i.e. if it is shifted.

            Returns
            -------
            result : np.ndarray
                A 1/-1-alternating mask.
        """
        # cast input
        to_center = np.array(to_center_input)
        dimensions = np.array(dimensions_input)

        # if none of the dimensions are zero centered, return a 1
        if np.all(to_center == 0):
            return 1

        if np.all(dimensions == np.array(1)) or \
                np.all(dimensions == np.array([1])):
            return dimensions
        # The dimensions of size 1 must be sorted out for computing the
        # centering_mask. The depth of the array will be restored in the
        # end.
        size_one_dimensions = []
        temp_dimensions = []
        temp_to_center = []
        for i in range(len(dimensions)):
            if dimensions[i] == 1:
                size_one_dimensions += [True]
            else:
                size_one_dimensions += [False]
                temp_dimensions += [dimensions[i]]
                temp_to_center += [to_center[i]]
        dimensions = np.array(temp_dimensions)
        to_center = np.array(temp_to_center)
        # cast the offset_input into the shape of to_center
        offset = np.zeros(to_center.shape, dtype=int)
Theo Steininger's avatar
Theo Steininger committed
97
98
99
100
        # if the first dimension has length 1 and has an offset, restore the
        # global minus by hand
        if not size_one_dimensions[0]:
            offset[0] = int(offset_input)
101
102
103
104
105
106
107
108
109
        # check for dimension match
        if to_center.size != dimensions.size:
            raise TypeError(
                'The length of the supplied lists does not match.')

        # build up the value memory
        # compute an identifier for the parameter set
        temp_id = tuple(
            (tuple(to_center), tuple(dimensions), tuple(offset)))
Jait Dixit's avatar
Jait Dixit committed
110
        if temp_id not in self.centering_mask_dict:
111
112
113
114
            # use np.tile in order to stack the core alternation scheme
            # until the desired format is constructed.
            core = np.fromfunction(
                lambda *args: (-1) **
Jait Dixit's avatar
Jait Dixit committed
115
116
117
118
119
                              (np.tensordot(to_center,
                                            args +
                                            offset.reshape(offset.shape +
                                                           (1,) *
                                                           (np.array(
120
                                                              args).ndim - 1)),
Jait Dixit's avatar
Jait Dixit committed
121
                                            1)),
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                (2,) * to_center.size)
            # Cast the core to the smallest integers we can get
            core = core.astype(np.int8)

            centering_mask = np.tile(core, dimensions // 2)
            # for the dimensions of odd size corresponding slices must be
            # added
            for i in range(centering_mask.ndim):
                # check if the size of the certain dimension is odd or even
                if (dimensions % 2)[i] == 0:
                    continue
                # prepare the slice object
                temp_slice = (slice(None),) * i + (slice(-2, -1, 1),) + \
                             (slice(None),) * (centering_mask.ndim - 1 - i)
                # append the slice to the centering_mask
                centering_mask = np.append(centering_mask,
                                           centering_mask[temp_slice],
                                           axis=i)
            # Add depth to the centering_mask where the length of a
            # dimension was one
            temp_slice = ()
            for i in range(len(size_one_dimensions)):
                if size_one_dimensions[i]:
                    temp_slice += (None,)
                else:
                    temp_slice += (slice(None),)
            centering_mask = centering_mask[temp_slice]
Theo Steininger's avatar
Theo Steininger committed
149
150
151
152
153
            # if the first dimension has length 1 and has an offset, restore
            # the global minus by hand
            if size_one_dimensions[0] and offset_input:
                centering_mask *= -1

Jait Dixit's avatar
Jait Dixit committed
154
155
            self.centering_mask_dict[temp_id] = centering_mask
        return self.centering_mask_dict[temp_id]
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    def _apply_mask(self, val, mask, axes):
        """
            Apply centering mask to an array.

            Parameters
            ----------
            val: distributed_data_object or numpy.ndarray
                The value-array on which the mask should be applied.

            mask: numpy.ndarray
                The mask to be applied.

            axes: tuple
                The axes which are to be transformed.

            Returns
            -------
            distributed_data_object or np.nd_array
                Mask input array by multiplying it with the mask.
        """
        # reshape mask if necessary
        if axes:
            mask = mask.reshape(
                [y if x in axes else 1
Jait Dixit's avatar
Jait Dixit committed
181
                 for x, y in enumerate(val.shape)]
182
183
184
            )
        return val * mask

Theo Steininger's avatar
Theo Steininger committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def transform(self, val, axes, **kwargs):
        """
            A generic ff-transform function.

            Parameters
            ----------
            field_val : distributed_data_object
                The value-array of the field which is supposed to
                be transformed.

            domain : nifty.rg.nifty_rg.rg_space
                The domain of the space which should be transformed.

            codomain : nifty.rg.nifty_rg.rg_space
                The taget into which the field should be transformed.
        """
        raise NotImplementedError


Martin Reinecke's avatar
Martin Reinecke committed
204
class MPIFFT(Transform):
Theo Steininger's avatar
Theo Steininger committed
205
    """
Martin Reinecke's avatar
Martin Reinecke committed
206
        The MPI-parallel FFTW pendant of a fft object.
Theo Steininger's avatar
Theo Steininger committed
207
208
209
210
    """

    def __init__(self, domain, codomain):

211
        if fftw_mpi is None:
Martin Reinecke's avatar
Martin Reinecke committed
212
213
            raise ImportError(
                "The MPI FFTW module is needed but not available.")
Theo Steininger's avatar
Theo Steininger committed
214

Martin Reinecke's avatar
Martin Reinecke committed
215
        super(MPIFFT, self).__init__(domain, codomain)
Theo Steininger's avatar
Theo Steininger committed
216

Martin Reinecke's avatar
Martin Reinecke committed
217
218
        # Enable caching
        fftw_mpi.interfaces.cache.enable()
Theo Steininger's avatar
Theo Steininger committed
219
220
221
222
223
224
225
226
227

        # The plan_dict stores the FFTWTransformInfo objects which correspond
        # to a certain set of (field_val, domain, codomain) sets.
        self.info_dict = {}

    def _get_transform_info(self, domain, codomain, axes, local_shape,
                            local_offset_Q, is_local, transform_shape=None,
                            **kwargs):
        # generate a id-tuple which identifies the domain-codomain setting
Theo Steininger's avatar
Theo Steininger committed
228
        temp_id = (domain, codomain, transform_shape, is_local)
Theo Steininger's avatar
Theo Steininger committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        # generate the plan_and_info object if not already there
        if temp_id not in self.info_dict:
            if is_local:
                self.info_dict[temp_id] = FFTWLocalTransformInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, **kwargs
                )
            else:
                self.info_dict[temp_id] = FFTWMPITransfromInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, transform_shape, **kwargs
                )

        return self.info_dict[temp_id]

245
246
    def _atomic_mpi_transform(self, val, info, axes):
        # Apply codomain centering mask
247
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
248
249
250
251
252
253
            temp_val = np.copy(val)
            val = self._apply_mask(temp_val, info.cmask_codomain, axes)

        p = info.plan
        # Load the value into the plan
        if p.has_input:
254
            p.input_array[None] = val
255
256
257
258
259
260
261
262
263
        # Execute the plan
        p()

        if p.has_output:
            result = p.output_array
        else:
            return None

        # Apply domain centering mask
264
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            result = self._apply_mask(result, info.cmask_domain, axes)

        # Correct the sign if needed
        result *= info.sign

        return result

    def _local_transform(self, val, axes, **kwargs):
        ####
        # val must be numpy array or d2o with slicing distributor
        ###

        try:
            local_val = val.get_local_data(copy=False)
        except(AttributeError):
            local_val = val
Jait Dixit's avatar
Jait Dixit committed
281

282
283
        current_info = self._get_transform_info(self.domain,
                                                self.codomain,
284
                                                axes,
285
                                                local_shape=local_val.shape,
Jait Dixit's avatar
Jait Dixit committed
286
                                                local_offset_Q=False,
287
288
289
290
                                                is_local=True,
                                                **kwargs)

        # Apply codomain centering mask
291
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
292
293
294
295
296
297
298
299
300
301
302
            temp_val = np.copy(local_val)
            local_val = self._apply_mask(temp_val,
                                         current_info.cmask_codomain, axes)

        local_result = current_info.fftw_interface(
            local_val,
            axes=axes,
            planner_effort='FFTW_ESTIMATE'
        )

        # Apply domain centering mask
303
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
304
305
306
307
308
309
310
311
312
313
            local_result = self._apply_mask(local_result,
                                            current_info.cmask_domain, axes)

        # Correct the sign if needed
        if current_info.sign != 1:
            local_result *= current_info.sign

        try:
            # Create return object and insert results inplace
            return_val = val.copy_empty(global_shape=val.shape,
314
                                        dtype=np.complex)
315
316
317
318
319
320
321
322
            return_val.set_local_data(data=local_result, copy=False)
        except(AttributeError):
            return_val = local_result

        return return_val

    def _repack_to_fftw_and_transform(self, val, axes, **kwargs):
        temp_val = val.copy_empty(distribution_strategy='fftw')
323
        self.logger.info("Repacking d2o to fftw distribution strategy")
324
325
326
327
328
329
330
331
332
333
334
335
336
        temp_val.set_full_data(val, copy=False)

        # Recursive call to transform
        result = self.transform(temp_val, axes, **kwargs)

        return_val = result.copy_empty(
            distribution_strategy=val.distribution_strategy)
        return_val.set_full_data(data=result, copy=False)

        return return_val

    def _mpi_transform(self, val, axes, **kwargs):

Jait Dixit's avatar
Jait Dixit committed
337
338
339
340
        local_offset_list = np.cumsum(
            np.concatenate([[0, ], val.distributor.all_local_slices[:, 2]])
        )
        local_offset_Q = bool(local_offset_list[val.distributor.comm.rank] % 2)
341
        return_val = val.copy_empty(global_shape=val.shape,
342
                                    dtype=np.complex)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

        # Extract local data
        local_val = val.get_local_data(copy=False)

        # Create temporary storage for slices
        temp_val = None

        # If axes tuple includes all axes, set it to None
        if axes is not None:
            if set(axes) == set(range(len(val.shape))):
                axes = None

        current_info = None
        for slice_list in utilities.get_slice_list(local_val.shape, axes):
            if slice_list == [slice(None, None)]:
                inp = local_val
            else:
                if temp_val is None:
Jait Dixit's avatar
Jait Dixit committed
361
362
                    temp_val = np.empty_like(
                        local_val,
363
                        dtype=np.complex
Jait Dixit's avatar
Jait Dixit committed
364
                    )
365
366
367
368
369
370
371
372
373
374
375
                inp = local_val[slice_list]

            # This is in order to make FFTW behave properly when slicing input
            # over MPI ranks when the input is 1-dimensional. The default
            # behaviour is to optimize to take advantage of byte-alignment,
            # which doesn't match the slicing strategy for multi-dimensional
            # data.
            original_shape = None
            if len(inp.shape) == 1:
                original_shape = inp.shape
                inp = inp.reshape(inp.shape[0], 1)
Theo Steininger's avatar
Theo Steininger committed
376
                axes = (0, )
377
378

            if current_info is None:
379
380
381
                transform_shape = list(inp.shape)
                transform_shape[0] = val.shape[0]

382
383
384
                current_info = self._get_transform_info(
                    self.domain,
                    self.codomain,
385
                    axes,
386
387
388
                    local_shape=val.local_shape,
                    local_offset_Q=local_offset_Q,
                    is_local=False,
389
                    transform_shape=tuple(transform_shape),
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                    **kwargs
                )

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                result = self._atomic_mpi_transform(inp, current_info, axes)

            if result is None:
                temp_val = np.empty_like(local_val)
            elif slice_list == [slice(None, None)]:
                temp_val = result
            else:
                # Reverting to the original shape i.e. before the input was
                # augmented with 1 to make FFTW behave properly.
                if original_shape is not None:
                    result = result.reshape(original_shape)
                temp_val[slice_list] = result

        return_val.set_local_data(data=temp_val, copy=False)

        return return_val

Jait Dixit's avatar
Jait Dixit committed
412
    def transform(self, val, axes, **kwargs):
413
        """
Martin Reinecke's avatar
Martin Reinecke committed
414
            The MPI-parallel FFTW transform function.
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            Parameters
            ----------
            val : distributed_data_object or numpy.ndarray
                The value-array of the field which is supposed to
                be transformed.

            axes: tuple, None
                The axes which should be transformed.

            **kwargs : *optional*
                Further kwargs are passed to the create_mpi_plan routine.

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
436
            raise ValueError("Provided axes does not match array shape")
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

        # If the input is a numpy array we transform it locally
        if not isinstance(val, distributed_data_object):
            # Cast to a np.ndarray
            temp_val = np.asarray(val)

            # local transform doesn't apply transforms inplace
            return_val = self._local_transform(temp_val, axes)
        else:
            if val.distribution_strategy in STRATEGIES['slicing']:
                if axes is None or 0 in axes:
                    if val.distribution_strategy != 'fftw':
                        return_val = \
                            self._repack_to_fftw_and_transform(
                                val, axes, **kwargs
                            )
                    else:
                        return_val = self._mpi_transform(
                            val, axes, **kwargs
                        )
                else:
                    return_val = self._local_transform(
                        val, axes, **kwargs
                    )
            else:
                return_val = self._repack_to_fftw_and_transform(
                    val, axes, **kwargs
                )

        return return_val


class FFTWTransformInfo(object):
470
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
471
                 local_offset_Q, fftw_context, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
472
473
474
        if fftw_mpi is None:
            raise ImportError(
                "The MPI FFTW module is needed but not available.")
475

Theo Steininger's avatar
Theo Steininger committed
476
477
478
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

Theo Steininger's avatar
Theo Steininger committed
479
480
481
        self._cmask_domain = fftw_context.get_centering_mask(domain.zerocenter,
                                                             shape,
                                                             local_offset_Q)
482

Theo Steininger's avatar
Theo Steininger committed
483
484
485
486
        self._cmask_codomain = fftw_context.get_centering_mask(
                                                         codomain.zerocenter,
                                                         shape,
                                                         local_offset_Q)
487
488
489

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
Theo Steininger's avatar
Theo Steininger committed
490
491
492
        self._sign = (-1) ** np.sum(np.array(domain.zerocenter) *
                                    np.array(codomain.zerocenter) *
                                    (np.array(domain.shape) // 2 % 2))
493
494
495

    @property
    def cmask_domain(self):
Theo Steininger's avatar
Theo Steininger committed
496
        return self._cmask_domain
497
498
499

    @property
    def cmask_codomain(self):
Theo Steininger's avatar
Theo Steininger committed
500
        return self._cmask_codomain
501
502
503
504
505
506
507

    @property
    def sign(self):
        return self._sign


class FFTWLocalTransformInfo(FFTWTransformInfo):
508
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
509
                 local_offset_Q, fftw_context, **kwargs):
510
511
        super(FFTWLocalTransformInfo, self).__init__(domain,
                                                     codomain,
512
                                                     axes,
513
514
                                                     local_shape,
                                                     local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
515
                                                     fftw_context,
516
517
                                                     **kwargs)
        if codomain.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
518
            self._fftw_interface = fftw_mpi.interfaces.numpy_fft.fftn
519
        else:
Martin Reinecke's avatar
Martin Reinecke committed
520
            self._fftw_interface = fftw_mpi.interfaces.numpy_fft.ifftn
521
522
523
524
525
526
527

    @property
    def fftw_interface(self):
        return self._fftw_interface


class FFTWMPITransfromInfo(FFTWTransformInfo):
528
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
529
                 local_offset_Q, fftw_context, transform_shape, **kwargs):
530
531
        super(FFTWMPITransfromInfo, self).__init__(domain,
                                                   codomain,
532
                                                   axes,
533
534
                                                   local_shape,
                                                   local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
535
                                                   fftw_context,
536
                                                   **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
537
        self._plan = fftw_mpi.create_mpi_plan(
538
539
540
541
542
543
544
545
546
547
548
549
            input_shape=transform_shape,
            input_dtype='complex128',
            output_dtype='complex128',
            direction='FFTW_FORWARD' if codomain.harmonic else 'FFTW_BACKWARD',
            flags=["FFTW_ESTIMATE"],
            **kwargs
        )

    @property
    def plan(self):
        return self._plan

Jait Dixit's avatar
Jait Dixit committed
550

Martin Reinecke's avatar
Martin Reinecke committed
551
class ScalarFFT(Transform):
Jait Dixit's avatar
Jait Dixit committed
552
    """
Theo Steininger's avatar
Theo Steininger committed
553
        The numpy fft pendant of a fft object.
Jait Dixit's avatar
Jait Dixit committed
554
555
556
557
558

    """

    def transform(self, val, axes, **kwargs):
        """
Martin Reinecke's avatar
Martin Reinecke committed
559
            The scalar FFT transform function.
Jait Dixit's avatar
Jait Dixit committed
560
561
562

            Parameters
            ----------
Theo Steininger's avatar
Theo Steininger committed
563
            val : distributed_data_object or numpy.ndarray
Jait Dixit's avatar
Jait Dixit committed
564
565
566
                The value-array of the field which is supposed to
                be transformed.

Theo Steininger's avatar
Theo Steininger committed
567
            axes: tuple, None
Jait Dixit's avatar
Jait Dixit committed
568
569
570
                The axes which should be transformed.

            **kwargs : *optional*
Theo Steininger's avatar
Theo Steininger committed
571
                Further kwargs are passed to the create_mpi_plan routine.
Jait Dixit's avatar
Jait Dixit committed
572
573
574
575
576
577

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
Martin Reinecke's avatar
Martin Reinecke committed
578
        # Enable caching
579
        if fftw_scalar is not None:
Martin Reinecke's avatar
Martin Reinecke committed
580
            fftw_scalar.interfaces.cache.enable()
581

Jait Dixit's avatar
Jait Dixit committed
582
583
584
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
585
            raise ValueError("Provided axes does not match array shape")
Jait Dixit's avatar
Jait Dixit committed
586

Theo Steininger's avatar
Theo Steininger committed
587
        return_val = val.copy_empty(global_shape=val.shape,
588
                                    dtype=np.complex)
Jait Dixit's avatar
Jait Dixit committed
589

Theo Steininger's avatar
Theo Steininger committed
590
591
        if (axes is None) or (0 in axes) or \
           (val.distribution_strategy not in STRATEGIES['slicing']):
Jait Dixit's avatar
Jait Dixit committed
592

Theo Steininger's avatar
Theo Steininger committed
593
594
            if val.distribution_strategy == 'not':
                local_val = val.get_local_data(copy=False)
Jait Dixit's avatar
Jait Dixit committed
595
            else:
Theo Steininger's avatar
Theo Steininger committed
596
597
598
599
600
601
                local_val = val.get_full_data()

            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=False)
            return_val.set_full_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
602
603

        else:
Theo Steininger's avatar
Theo Steininger committed
604
605
606
607
608
609
610
611
612
613
614
615
            local_offset_list = np.cumsum(
                    np.concatenate([[0, ],
                                    val.distributor.all_local_slices[:, 2]]))
            local_offset_Q = \
                bool(local_offset_list[val.distributor.comm.rank] % 2)

            local_val = val.get_local_data()
            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=local_offset_Q)

            return_val.set_local_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
616
617

        return return_val
Theo Steininger's avatar
Theo Steininger committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

    def _atomic_transform(self, local_val, axes, local_offset_Q):

        # some auxiliaries for the mask computation
        local_shape = local_val.shape
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

        # Apply codomain centering mask
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
            temp_val = np.copy(local_val)
            mask = self.get_centering_mask(self.codomain.zerocenter,
                                           shape,
                                           local_offset_Q)
            local_val = self._apply_mask(temp_val, mask, axes)

        # perform the transformation
635
        if fftw_scalar is not None:
636
            if self.codomain.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
637
                result_val = fftw_scalar.interfaces.numpy_fft.fftn(local_val, axes=axes)
638
            else:
Martin Reinecke's avatar
Martin Reinecke committed
639
                result_val = fftw_scalar.interfaces.numpy_fft.ifftn(local_val, axes=axes)
640
        else:
641
642
643
644
            if self.codomain.harmonic:
                result_val = np.fft.fftn(local_val, axes=axes)
            else:
                result_val = np.fft.ifftn(local_val, axes=axes)
Theo Steininger's avatar
Theo Steininger committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

        # Apply domain centering mask
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
            mask = self.get_centering_mask(self.domain.zerocenter,
                                           shape,
                                           local_offset_Q)
            result_val = self._apply_mask(result_val, mask, axes)

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
        sign = (-1) ** np.sum(np.array(self.domain.zerocenter) *
                              np.array(self.codomain.zerocenter) *
                              (np.array(self.domain.shape) // 2 % 2))
        if sign != 1:
            result_val *= sign

        return result_val