energy_operators.py 6.28 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Philipp Arras's avatar
Philipp Arras committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
23
from ..compat import *
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24
from ..domains.domain import Domain
Philipp Arras's avatar
Philipp Arras committed
25
26
27
from ..field import Field
from ..linearization import Linearization
from ..sugar import makeOp
Martin Reinecke's avatar
Martin Reinecke committed
28
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
29
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
30
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34
35
36
37
38
39
40
41
42


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
43
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
44
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
45
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
46
            jac = VdotOperator(2*x.val)(x.jac)
47
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
48
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
52
53
54
55
56


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
57
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
58
59

    def apply(self, x):
60
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
61
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
62
63
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
64
            val = Field.scalar(0.5*x.val.vdot(t1))
65
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
66
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Philipp Arras's avatar
Philipp Arras committed
88
89
        if isinstance(newdom, Domain):
            newdom = DomainTuple.make(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
90
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
91
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
92
        else:
Philipp Arras's avatar
Philipp Arras committed
93
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
94
95
96
                raise ValueError("domain mismatch")

    def apply(self, x):
97
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
98
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
99
        res = self._op(residual).real
100
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
101
102
103
104
105
106
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
107
108
109
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
110
111

    def apply(self, x):
112
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
113
114
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
115
            return Field.scalar(res)
116
117
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

121

122
class InverseGammaLikelihood(EnergyOperator):
123
124
125
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
126
127

    def apply(self, x):
128
        self._check_input(x)
Philipp Frank's avatar
Philipp Frank committed
129
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
130
131
        if not isinstance(x, Linearization):
            return Field.scalar(res)
132
133
        if not x.want_metric:
            return res
134
135
136
137
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
138
class BernoulliEnergy(EnergyOperator):
139
    def __init__(self, d):
Martin Reinecke's avatar
Martin Reinecke committed
140
        self._d = d
141
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
142
143

    def apply(self, x):
144
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
145
146
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
147
            return Field.scalar(v)
148
149
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
150
151
152
153
154
155
156
157
158
159
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
160
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
161
162

    def apply(self, x):
163
        self._check_input(x)
164
165
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
166
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
167
        else:
168
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
169
170
171
172
173
174
175
176
177
178
179
180
181
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
182
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
183
184
185
        self._res_samples = tuple(res_samples)

    def apply(self, x):
186
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
187
188
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))