lm_space.py 32.8 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
5
6
7
8
9
10
11

from __future__ import division

import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf

from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

12
from nifty.spaces.space import Space
theos's avatar
theos committed
13

csongor's avatar
csongor committed
14
15
16
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
theos's avatar
theos committed
17

18
LMSpaceParadict = None
Jait Dixit's avatar
Jait Dixit committed
19
# from nifty.nifty_power_indices import lm_power_indices
csongor's avatar
csongor committed
20
21
22
23
24
25
26
27
from nifty.nifty_random import random

gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')

LM_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']


28
class LMSpace(Space):
csongor's avatar
csongor committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128')):
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """

        # check imports
        if not gc['use_libsharp'] and not gc['use_healpy']:
            raise ImportError(about._errors.cstring(
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))

        self._cache_dict = {'check_codomain': {}}

theos's avatar
theos committed
123
        self.paradict = LMSpaceParadict(lmax=lmax, mmax=mmax)
csongor's avatar
csongor committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
            about.warnings.cprint("WARNING: data type set to complex128.")
            dtype = np.dtype('complex128')
        self.dtype = dtype

        self.harmonic = True
        self.distances = (np.float(1),)

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.dim,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)

    @property
    def para(self):
        temp = np.array([self.paradict['lmax'],
                         self.paradict['mmax']], dtype=int)
        return temp

    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
            if key in ['_cache_dict', 'power_indices']:
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
                if ii[0] not in ['_cache_dict', 'power_indices']]
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

    def copy(self):
170
171
172
        return LMSpace(lmax=self.paradict['lmax'],
                       mmax=self.paradict['mmax'],
                       dtype=self.dtype)
csongor's avatar
csongor committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    @property
    def shape(self):
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)


    @property
    def meta_volume(self):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
        """
        return np.float(self.dof())

    @property
    def meta_volume_split(self):
        mol = self.cast(1, dtype=np.float)
        mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
        return mol

    def complement_cast(self, x, axis=None, **kwargs):
        if axis is None:
            lmax = self.paradict['lmax']
            complexity_mask = x[:lmax+1].iscomplex()
            if complexity_mask.any():
                about.warnings.cprint("WARNING: Taking the absolute values for " +
                                      "all complex entries where lmax==0")
                x[:lmax+1] = abs(x[:lmax+1])
        else:
            # TODO hermitianize only on specific axis
            lmax = self.paradict['lmax']
            complexity_mask = x[:lmax+1].iscomplex()
            if complexity_mask.any():
                about.warnings.cprint("WARNING: Taking the absolute values for " +
                                      "all complex entries where lmax==0")
                x[:lmax+1] = abs(x[:lmax+1])
        return x

    # TODO: Extend to binning/log
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

    def _check_codomain(self, codomain):
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
        if codomain is None:
            return False

267
268
        from nifty.spaces.hp_space import HPSpace
        from nifty.spaces.gl_space import GLSpace
csongor's avatar
csongor committed
269
270
271
272
        if not isinstance(codomain, Space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))

273
        elif isinstance(codomain, GLSpace):
csongor's avatar
csongor committed
274
275
276
277
278
279
280
281
            # lmax==mmax
            # nlat==lmax+1
            # nlon==2*lmax+1
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
                return True

282
        elif isinstance(codomain, HPSpace):
csongor's avatar
csongor committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
                return True

        return False

    def get_codomain(self, coname=None, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
323
324
        from hp_space import HPSpace
        from gl_space import GLSpace
csongor's avatar
csongor committed
325
326
327
328
329
330
331
332
333
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
            else:
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
334
            return GLSpace(nlat=nlat, nlon=nlon, dtype=new_dtype)
csongor's avatar
csongor committed
335
336
337

        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
338
            return HPSpace(nside=nside)
csongor's avatar
csongor committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        else:
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

#        if arg is None:
#            x = 0
#
#        elif arg['random'] == "pm1":
#            x = random.pm1(dtype=self.dtype, shape=self.shape)
#
#        elif arg['random'] == "gau":
#            x = random.gau(dtype=self.dtype,
#                           shape=self.shape,
#                           mean=arg['mean'],
#                           std=arg['std'])

        if arg['random'] == "syn":
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
                if gc['use_libsharp']:
                    sample = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
                else:
                    sample = hp.synalm(
                                arg['spec'].astype(np.complex128),
                                lmax=lmax, mmax=mmax).astype(np.complex64,
                                                             copy=False)
            else:
                if gc['use_healpy']:
                    sample = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
                else:
                    sample = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)

        else:
415
            sample = super(LMSpace, self).get_random_values(**arg)
csongor's avatar
csongor committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

#        elif arg['random'] == "uni":
#            x = random.uni(dtype=self.dtype,
#                           shape=self.shape,
#                           vmin=arg['vmin'],
#                           vmax=arg['vmax'])
#
#        else:
#            raise KeyError(about._errors.cstring(
#                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
        sample = self.cast(sample)
        return sample

#    def calc_dot(self, x, y):
#        """
#            Computes the discrete inner product of two given arrays of field
#            values.
#
#            Parameters
#            ----------
#            x : numpy.ndarray
#                First array
#            y : numpy.ndarray
#                Second array
#
#            Returns
#            -------
#            dot : scalar
#                Inner product of the two arrays.
#        """
#        x = self.cast(x)
#        y = self.cast(y)
#
#        lmax = self.paradict['lmax']
#
#        x_low = x[:lmax + 1]
#        x_high = x[lmax + 1:]
#        y_low = y[:lmax + 1]
#        y_high = y[lmax + 1:]
#
#        dot = (x_low.real * y_low.real).sum()
#        dot += 2 * (x_high.real * y_high.real).sum()
#        dot += 2 * (x_high.imag * y_high.imag).sum()
#        return dot

    def dot_contraction(self, x, axes):
        assert len(axes) == 1
        axis = axes[0]
        lmax = self.paradict['lmax']

        # extract the low and high parts of x
        extractor = ()
        extractor += (slice(None),)*axis
        low_extractor = extractor + (slice(None, lmax+1), )
        high_extractor = extractor + (slice(lmax+1), )

        result = x[low_extractor].sum(axes) + 2 * x[high_extractor].sum(axes)
        return result

    def calc_transform(self, x, codomain=None, **kwargs):
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                codomain space to which the transformation shall map
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
        x = self.cast(x)

        if codomain is None:
            codomain = self.get_codomain()

        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))

502
        # if self.distribution_strategy != 'not':
csongor's avatar
csongor committed
503
504
505
506
507
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external alm2map method!")

        np_x = x.get_full_data()
508
509
        from hp_space import HPSpace
        from gl_space import GLSpace
510
        if isinstance(codomain, GLSpace):
csongor's avatar
csongor committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

            # transform
            if self.dtype == np.dtype('complex64'):
                np_Tx = gl.alm2map_f(np_x, nlat=nlat, nlon=nlon,
                                     lmax=lmax, mmax=mmax, cl=False)
            else:
                np_Tx = gl.alm2map(np_x, nlat=nlat, nlon=nlon,
                                   lmax=lmax, mmax=mmax, cl=False)
            Tx = codomain.cast(np_Tx)

525
        elif isinstance(codomain, HPSpace):
csongor's avatar
csongor committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

            # transform
            np_x = np_x.astype(np.complex128, copy=False)
            np_Tx = hp.alm2map(np_x, nside, lmax=lmax,
                               mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
                               pol=True, inplace=False)
            Tx = codomain.cast(np_Tx)

        else:
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))

        return codomain.cast(Tx)

    def calc_smooth(self, x, sigma=0, **kwargs):
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
        x = self.cast(x)
        # check sigma
        if sigma == 0:
            return self.unary_operation(x, op='copy')
        elif sigma == -1:
            about.infos.cprint("INFO: invalid sigma reset.")
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))

572
        # if self.distribution_strategy != 'not':
csongor's avatar
csongor committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external smoothalm method!")

        np_x = x.get_full_data()

        if gc['use_healpy']:
            np_smoothed_x = hp.smoothalm(np_x,
                                         fwhm=0.0,
                                         sigma=sigma,
                                         pol=True,
                                         mmax=self.paradict['mmax'],
                                         verbose=False,
                                         inplace=False)
        else:
            np_smoothed_x = gl.smoothalm(np_x,
                                         lmax=self.paradict['lmax'],
                                         mmax=self.paradict['mmax'],
                                         fwhm=0.0,
                                         sigma=sigma,
                                         overwrite=False)
        return self.cast(np_smoothed_x)

    def calc_power(self, x, **kwargs):
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

615
        # if self.distribution_strategy != 'not':
csongor's avatar
csongor committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external anaalm/alm2cl method!")

        np_x = x.get_full_data()

        # power spectrum
        if self.dtype == np.dtype('complex64'):
            if gc['use_libsharp']:
                result = gl.anaalm_f(np_x, lmax=lmax, mmax=mmax)
            else:
                np_x = np_x.astype(np.complex128, copy=False)
                result = hp.alm2cl(np_x,
                                   alms2=None,
                                   lmax=lmax,
                                   mmax=mmax,
                                   lmax_out=lmax,
                                   nspec=None)
        else:
            if gc['use_healpy']:
                result = hp.alm2cl(np_x,
                                   alms2=None,
                                   lmax=lmax,
                                   mmax=mmax,
                                   lmax_out=lmax,
                                   nspec=None)
            else:
                result = gl.anaalm(np_x,
                                   lmax=lmax,
                                   mmax=mmax)

        if self.dtype == np.dtype('complex64'):
            result = result.astype(np.float32, copy=False)
        elif self.dtype == np.dtype('complex128'):
            result = result.astype(np.float64, copy=False)
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: dtype %s not known to calc_power method." %
                str(self.dtype)))

    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
703
704
        from nifty.field import Field

csongor's avatar
csongor committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        try:
            x = x.get_full_data()
        except AttributeError:
            pass

        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])

            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
            if(vmin is None):
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            if(vmax is None):
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
            if(mono):
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)

            if(other is not None):
                if(isinstance(other, tuple)):
                    other = list(other)
                    for ii in xrange(len(other)):
737
                        if(isinstance(other[ii], Field)):
csongor's avatar
csongor committed
738
739
740
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
741
                elif(isinstance(other, Field)):
csongor's avatar
csongor committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
                imax = max(1, len(other) - 1)
                for ii in xrange(len(other)):
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
                    if(mono):
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
                if(legend):
                    ax0.legend()

            ax0.set_xlim(xaxes[1], xaxes[-1])
            ax0.set_xlabel(r"$\ell$")
            ax0.set_ylim(vmin, vmax)
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
            else:
                if(vmin is None):
                    vmin = np.min(x, axis=None, out=None)
                if(vmax is None):
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
                lm = 0
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
                else:
                    n_ = None
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
                ax0.set_xlabel(r"$\ell$")
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
                ax0.set_title(title)

        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
            pl.close(fig)
        else:
            fig.canvas.draw()

    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.dim)
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m