hplmtransformation.py 3.83 KB
Newer Older
1
import numpy as np
Jait Dixit's avatar
Jait Dixit committed
2
from transformation import Transformation
3
4
5
from d2o import distributed_data_object
from nifty.config import dependency_injector as gdi
import nifty.nifty_utilities as utilities
Jait Dixit's avatar
Jait Dixit committed
6
from nifty import HPSpace, LMSpace
7
8
9
10

hp = gdi.get('healpy')


Jait Dixit's avatar
Jait Dixit committed
11
class HPLMTransformation(Transformation):
Jait Dixit's avatar
Jait Dixit committed
12
    def __init__(self, domain, codomain=None, module=None):
13
14
15
        if 'healpy' not in gdi:
            raise ImportError("The module healpy is needed but not available")

Jait Dixit's avatar
Jait Dixit committed
16
17
18
19
        if codomain is None:
            self.domain = domain
            self.codomain = self.get_codomain(domain)
        elif self.check_codomain(domain, codomain):
Jait Dixit's avatar
Jait Dixit committed
20
21
22
23
24
            self.domain = domain
            self.codomain = codomain
        else:
            raise ValueError("ERROR: Incompatible codomain!")

Jait Dixit's avatar
Jait Dixit committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    @staticmethod
    def get_codomain(domain):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Parameters
            ----------
            domain: HPSpace
                Space for which a codomain is to be generated

            Returns
            -------
            codomain : LMSpace
                A compatible codomain.
        """
        if domain is None:
            raise ValueError('ERROR: cannot generate codomain for None')

        if not isinstance(domain, HPSpace):
            raise TypeError('ERROR: domain needs to be a HPSpace')

47
        lmax = 3 * domain.nside - 1
Jait Dixit's avatar
Jait Dixit committed
48
49
50
        mmax = lmax
        return LMSpace(lmax=lmax, mmax=mmax, dtype=np.dtype('complex128'))

Jait Dixit's avatar
Jait Dixit committed
51
52
53
54
55
56
57
58
59
60
61
    @staticmethod
    def check_codomain(domain, codomain):
        if not isinstance(domain, HPSpace):
            raise TypeError('ERROR: domain is not a HPSpace')

        if codomain is None:
            return False

        if not isinstance(codomain, LMSpace):
            raise TypeError('ERROR: codomain must be a LMSpace.')

62
63
64
        nside = domain.nside
        lmax = codomain.lmax
        mmax = codomain.mmax
Jait Dixit's avatar
Jait Dixit committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        if (3 * nside - 1 != lmax) or (lmax != mmax):
            return False

        return True

    def transform(self, val, axes=None, **kwargs):
        """
        HP -> LM transform method.

        Parameters
        ----------
        val : np.ndarray or distributed_data_object
            The value array which is to be transformed

        axes : None or tuple
            The axes along which the transformation should take place

        """
84
85
86
87
        # get by number of iterations from kwargs
        niter = kwargs['niter'] if 'niter' in kwargs else 0

        if self.domain.discrete:
Jait Dixit's avatar
Jait Dixit committed
88
            val = self.domain.weight(val, power=-0.5, axes=axes)
89
90

        # shorthands for transform parameters
91
92
        lmax = self.codomain.lmax
        mmax = self.codomain.mmax
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

        if isinstance(val, distributed_data_object):
            temp_val = val.get_full_data()
        else:
            temp_val = val

        return_val = None

        for slice_list in utilities.get_slice_list(temp_val.shape, axes):
            if slice_list == [slice(None, None)]:
                inp = temp_val
            else:
                if return_val is None:
                    return_val = np.empty_like(temp_val)
                inp = temp_val[slice_list]

            inp = hp.map2alm(inp.astype(np.float64, copy=False),
                             lmax=lmax, mmax=mmax, iter=niter, pol=True,
                             use_weights=False, datapath=None)

            if slice_list == [slice(None, None)]:
                return_val = inp
            else:
                return_val[slice_list] = inp

        if isinstance(val, distributed_data_object):
            new_val = val.copy_empty(dtype=self.codomain.dtype)
            new_val.set_full_data(return_val, copy=False)
        else:
            return_val = return_val.astype(self.codomain.dtype, copy=False)

Jait Dixit's avatar
Jait Dixit committed
124
        return return_val