harmonic_transform_operator.py 8.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
19
20
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import numpy as np
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domains.rg_space import RGSpace
22
23
24
25
from .linear_operator import LinearOperator
from .. import dobj
from .. import utilities
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
26
from ..domains.gl_space import GLSpace
27
28
29


class HarmonicTransformOperator(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
30
    """Transforms between a harmonic domain and a position domain counterpart.
31
32
33
34
35
36
37
38
39
40
41

    Built-in domain pairs are

      - a harmonic and a non-harmonic RGSpace (with matching distances)
      - an LMSpace and a LMSpace
      - an LMSpace and a GLSpace

    The supported operations are times() and adjoint_times().

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
42
    domain : Domain, tuple of Domain or DomainTuple
43
44
        The domain of the data that is input by "times" and output by
        "adjoint_times".
Martin Reinecke's avatar
Martin Reinecke committed
45
46
47
48
    target : Domain, optional
        The target domain of the transform operation.
        If omitted, a domain will be chosen automatically.
        Whenever the input domain of the transform is an RGSpace, the codomain
49
50
        (and its parameters) are uniquely determined.
        For LMSpace, a GLSpace of sufficient resolution is chosen.
Martin Reinecke's avatar
Martin Reinecke committed
51
52
53
54
    space : int, optional
        The index of the domain on which the operator should act
        If None, it is set to 0 if domain contains exactly one subdomain.
        domain[space] must be a harmonic domain.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """

    def __init__(self, domain, target=None, space=None):
        super(HarmonicTransformOperator, self).__init__()

        # Initialize domain and target
        self._domain = DomainTuple.make(domain)
        self._space = utilities.infer_space(self._domain, space)

        hspc = self._domain[self._space]
        if not hspc.harmonic:
            raise TypeError(
                "HarmonicTransformOperator only works on a harmonic space")
        if target is None:
            target = hspc.get_default_codomain()

        self._target = [dom for dom in self._domain]
        self._target[self._space] = target
        self._target = DomainTuple.make(self._target)
        hspc.check_codomain(target)
        target.check_codomain(hspc)

        if isinstance(hspc, RGSpace):
            self._applyfunc = self._apply_cartesian
            import pyfftw
            pyfftw.interfaces.cache.enable()
        else:
            from pyHealpix import sharpjob_d
            self._applyfunc = self._apply_spherical
            self.lmax = hspc.lmax
            self.mmax = hspc.mmax
            self.sjob = sharpjob_d()
            self.sjob.set_triangular_alm_info(self.lmax, self.mmax)
            if isinstance(target, GLSpace):
                self.sjob.set_Gauss_geometry(target.nlat, target.nlon)
            else:
                self.sjob.set_Healpix_geometry(target.nside)

    def apply(self, x, mode):
        self._check_input(x, mode)
        if np.issubdtype(x.dtype, np.complexfloating):
            return (self._applyfunc(x.real, mode) +
                    1j*self._applyfunc(x.imag, mode))
        else:
            return self._applyfunc(x, mode)

    def _apply_cartesian(self, x, mode):
        from pyfftw.interfaces.numpy_fft import fftn
        axes = x.domain.axes[self._space]
        tdom = self._target if x.domain == self._domain else self._domain
        oldax = dobj.distaxis(x.val)
        if oldax not in axes:  # straightforward, no redistribution needed
            ldat = dobj.local_data(x.val)
            ldat = utilities.hartley(ldat, axes=axes)
            tmp = dobj.from_local_data(x.val.shape, ldat, distaxis=oldax)
        elif len(axes) < len(x.shape) or len(axes) == 1:
            # we can use one Hartley pass in between the redistributions
            tmp = dobj.redistribute(x.val, nodist=axes)
            newax = dobj.distaxis(tmp)
            ldat = dobj.local_data(tmp)
            ldat = utilities.hartley(ldat, axes=axes)
            tmp = dobj.from_local_data(tmp.shape, ldat, distaxis=newax)
            tmp = dobj.redistribute(tmp, dist=oldax)
        else:  # two separate, full FFTs needed
            # ideal strategy for the moment would be:
            # - do real-to-complex FFT on all local axes
            # - fill up array
            # - redistribute array
            # - do complex-to-complex FFT on remaining axis
            # - add re+im
            # - redistribute back
            rem_axes = tuple(i for i in axes if i != oldax)
            tmp = x.val
            ldat = dobj.local_data(tmp)
            ldat = utilities.my_fftn_r2c(ldat, axes=rem_axes)
            if oldax != 0:
                raise ValueError("bad distribution")
            ldat2 = ldat.reshape((ldat.shape[0],
                                  np.prod(ldat.shape[1:])))
            shp2d = (x.val.shape[0], np.prod(x.val.shape[1:]))
            tmp = dobj.from_local_data(shp2d, ldat2, distaxis=0)
            tmp = dobj.transpose(tmp)
            ldat2 = dobj.local_data(tmp)
            ldat2 = fftn(ldat2, axes=(1,))
            ldat2 = ldat2.real+ldat2.imag
            tmp = dobj.from_local_data(tmp.shape, ldat2, distaxis=0)
            tmp = dobj.transpose(tmp)
            ldat2 = dobj.local_data(tmp).reshape(ldat.shape)
            tmp = dobj.from_local_data(x.val.shape, ldat2, distaxis=0)
        Tval = Field(tdom, tmp)
        fct = self._domain[self._space].scalar_dvol()
        if fct != 1:
            Tval *= fct

        return Tval

    def _slice_p2h(self, inp):
        rr = self.sjob.alm2map_adjoint(inp)
153
154
155
        if len(rr) != ((self.mmax+1)*(self.mmax+2))//2 + \
                      (self.mmax+1)*(self.lmax-self.mmax):
            raise ValueError("array length mismatch")
156
157
158
159
160
161
162
163
        res = np.empty(2*len(rr)-self.lmax-1, dtype=rr[0].real.dtype)
        res[0:self.lmax+1] = rr[0:self.lmax+1].real
        res[self.lmax+1::2] = np.sqrt(2)*rr[self.lmax+1:].real
        res[self.lmax+2::2] = np.sqrt(2)*rr[self.lmax+1:].imag
        return res/np.sqrt(np.pi*4)

    def _slice_h2p(self, inp):
        res = np.empty((len(inp)+self.lmax+1)//2, dtype=(inp[0]*1j).dtype)
164
165
166
        if len(res) != ((self.mmax+1)*(self.mmax+2))//2 + \
                       (self.mmax+1)*(self.lmax-self.mmax):
            raise ValueError("array length mismatch")
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        res[0:self.lmax+1] = inp[0:self.lmax+1]
        res[self.lmax+1:] = np.sqrt(0.5)*(inp[self.lmax+1::2] +
                                          1j*inp[self.lmax+2::2])
        res = self.sjob.alm2map(res)
        return res/np.sqrt(np.pi*4)

    def _apply_spherical(self, x, mode):
        axes = x.domain.axes[self._space]
        axis = axes[0]
        tval = x.val
        if dobj.distaxis(tval) == axis:
            tval = dobj.redistribute(tval, nodist=(axis,))
        distaxis = dobj.distaxis(tval)

        p2h = not x.domain[self._space].harmonic
        tdom = self._target if x.domain == self._domain else self._domain
        func = self._slice_p2h if p2h else self._slice_h2p
        idat = dobj.local_data(tval)
        odat = np.empty(dobj.local_shape(tdom.shape, distaxis=distaxis),
                        dtype=x.dtype)
        for slice in utilities.get_slice_list(idat.shape, axes):
            odat[slice] = func(idat[slice])
        odat = dobj.from_local_data(tdom.shape, odat, distaxis)
        if distaxis != dobj.distaxis(x.val):
            odat = dobj.redistribute(odat, dist=dobj.distaxis(x.val))
        return Field(tdom, odat)

    @property
    def domain(self):
        return self._domain

    @property
    def target(self):
        return self._target

    @property
    def capability(self):
        return self.TIMES | self.ADJOINT_TIMES