numpy_do.py 2.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
# Data object module for NIFTy that uses simple numpy ndarrays.

Martin Reinecke's avatar
Martin Reinecke committed
21
from __future__ import print_function
22
23
import numpy as np
from numpy import ndarray as data_object
Martin Reinecke's avatar
Martin Reinecke committed
24
from numpy import full, empty, empty_like, sqrt, ones, zeros, vdot, abs, \
Martin Reinecke's avatar
Martin Reinecke committed
25
                  exp, log, tanh
Martin Reinecke's avatar
Martin Reinecke committed
26
27
from .random import Random

Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
ntask = 1
rank = 0
master = True

32

Martin Reinecke's avatar
Martin Reinecke committed
33
34
35
36
def is_numpy():
    return True


Martin Reinecke's avatar
Martin Reinecke committed
37
38
39
40
def mprint(*args):
    print(*args)


41
42
def from_object(object, dtype=None, copy=True):
    return np.array(object, dtype=dtype, copy=copy)
Martin Reinecke's avatar
Martin Reinecke committed
43
44
45
46
47


def from_random(random_type, shape, dtype=np.float64, **kwargs):
    generator_function = getattr(Random, random_type)
    return generator_function(dtype=dtype, shape=shape, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
48

Martin Reinecke's avatar
Martin Reinecke committed
49

Martin Reinecke's avatar
Martin Reinecke committed
50
51
52
53
def local_data(arr):
    return arr


54
55
56
57
def ibegin_from_shape(glob_shape, distaxis=-1):
    return (0,)*len(glob_shape)


Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
61
62
63
64
65
def ibegin(arr):
    return (0,)*arr.ndim


def np_allreduce_sum(arr):
    return arr


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
66
def distaxis(arr):
Martin Reinecke's avatar
Martin Reinecke committed
67
    return -1
Martin Reinecke's avatar
Martin Reinecke committed
68
69


Martin Reinecke's avatar
Martin Reinecke committed
70
71
def from_local_data(shape, arr, distaxis):
    if shape != arr.shape:
Martin Reinecke's avatar
Martin Reinecke committed
72
73
74
75
        raise ValueError
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
76
def from_global_data(arr, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
80
def to_global_data(arr):
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
84
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
    return arr


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
88
def default_distaxis():
Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    return -1


92
def local_shape(glob_shape, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
93
    return glob_shape
94
95
96
97
98
99
100
101


def lock(arr):
    arr.flags.writeable = False


def locked(arr):
    return not arr.flags.writeable