distributed_do.py 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import print_function
20
21
22
23
import numpy as np
from .random import Random
from mpi4py import MPI

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
24
25
26
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
27
master = (rank == 0)
28
29


Martin Reinecke's avatar
Martin Reinecke committed
30
31
32
33
def is_numpy():
    return False


Martin Reinecke's avatar
Martin Reinecke committed
34
35
36
37
38
def mprint(*args):
    if master:
        print(*args)


Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
39
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
40
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
41

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
42
43

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
44
45
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
46
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
47
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
48
49
    return lo, hi

50

51
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
52
    if len(shape) == 0 or distaxis == -1:
53
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
54
55
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
56
57
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
58

59
60
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
61
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
62
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
63
            distaxis = -1
64
65
66
        self._distaxis = distaxis
        self._data = data

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
67
    def _sanity_checks(self):
68
        # check whether the distaxis is consistent
Martin Reinecke's avatar
Martin Reinecke committed
69
        if self._distaxis < -1 or self._distaxis >= len(self._shape):
70
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
74
        itmp = np.array(self._distaxis)
        otmp = np.empty(ntask, dtype=np.int)
        _comm.Allgather(itmp, otmp)
        if np.any(otmp != self._distaxis):
75
76
            raise ValueError
        # check whether the global shape is consistent
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
        itmp = np.array(self._shape)
        otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
        _comm.Allgather(itmp, otmp)
80
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
81
            if np.any(otmp[i, :] != self._shape):
82
83
                raise ValueError
        # check shape of local data
Martin Reinecke's avatar
Martin Reinecke committed
84
85
        if self._distaxis < 0:
            if self._data.shape != self._shape:
86
87
                raise ValueError
        else:
Martin Reinecke's avatar
Martin Reinecke committed
88
89
90
91
            itmp = np.array(self._shape)
            itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
                                              ntask, rank)
            if np.any(self._data.shape != itmp):
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
                raise ValueError

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
108
        return data_object(self._shape, self._data.real, self._distaxis)
109
110
111

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
112
        return data_object(self._shape, self._data.imag, self._distaxis)
113

Martin Reinecke's avatar
Martin Reinecke committed
114
115
116
117
118
119
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
120
    def _contraction_helper(self, op, mpiop, axis):
121
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
122
            if len(axis) == len(self._data.shape):
123
124
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
125
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
126
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
127
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
128
129
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
130
            return res2[()]
131
132

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
133
134
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
135
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
136
            return from_global_data(res2, distaxis=0)
137
        else:
Martin Reinecke's avatar
Martin Reinecke committed
138
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
139
140
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
141
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
142
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
143
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
144
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
145
146
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
147
148
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
149
150
151

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
152

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
153
154
    def min(self, axis=None):
        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
155

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
156
157
    def max(self, axis=None):
        return self._contraction_helper("max", MPI.MAX, axis)
158

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
159
160
    def mean(self):
        return self.sum()/self.size
Martin Reinecke's avatar
Martin Reinecke committed
161

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
162
163
    def std(self):
        return np.sqrt(self.var())
Martin Reinecke's avatar
Martin Reinecke committed
164

Martin Reinecke's avatar
Martin Reinecke committed
165
    # FIXME: to be improved!
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
166
167
168
    def var(self):
        return (abs(self-self.mean())**2).mean()

169
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
170
        a = self
171
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
172
            b = other
173
174
175
176
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
177
178
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
179
180
181
182
        elif np.isscalar(other):
            a = a._data
            b = other
        elif isinstance(other, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
183
            a = a._data
184
            b = other
Martin Reinecke's avatar
Martin Reinecke committed
185
186
        else:
            return NotImplemented
187
188

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
192
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    def __add__(self, other):
        return self._binary_helper(other, op='__add__')

    def __radd__(self, other):
        return self._binary_helper(other, op='__radd__')

    def __iadd__(self, other):
        return self._binary_helper(other, op='__iadd__')

    def __sub__(self, other):
        return self._binary_helper(other, op='__sub__')

    def __rsub__(self, other):
        return self._binary_helper(other, op='__rsub__')

    def __isub__(self, other):
        return self._binary_helper(other, op='__isub__')

    def __mul__(self, other):
        return self._binary_helper(other, op='__mul__')

    def __rmul__(self, other):
        return self._binary_helper(other, op='__rmul__')

    def __imul__(self, other):
        return self._binary_helper(other, op='__imul__')

    def __div__(self, other):
        return self._binary_helper(other, op='__div__')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='__rdiv__')

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
227
228
229
    def __idiv__(self, other):
        return self._binary_helper(other, op='__idiv__')

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

    def __pow__(self, other):
        return self._binary_helper(other, op='__pow__')

    def __rpow__(self, other):
        return self._binary_helper(other, op='__rpow__')

    def __ipow__(self, other):
        return self._binary_helper(other, op='__ipow__')

    def __eq__(self, other):
        return self._binary_helper(other, op='__eq__')

    def __ne__(self, other):
        return self._binary_helper(other, op='__ne__')

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
252
        return data_object(self._shape, -self._data, self._distaxis)
253
254

    def __abs__(self):
Martin Reinecke's avatar
Martin Reinecke committed
255
        return data_object(self._shape, np.abs(self._data), self._distaxis)
256
257

    def all(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
258
        return self.sum() == self.size
259
260

    def any(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
261
        return self.sum() != 0
262

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
263
264
    def fill(self, value):
        self._data.fill(value)
265

Martin Reinecke's avatar
Martin Reinecke committed
266

Martin Reinecke's avatar
Martin Reinecke committed
267
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
268
269
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
270
271


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
272
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
273
274
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
275
276


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
277
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
278
279
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
280
281


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
282
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
283
284
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
285
286
287
288
289
290
291


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
292
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
293
294
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
295
    return res[()]
296
297
298
299
300
301
302


def _math_helper(x, function, out):
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
303
        return data_object(x.shape, function(x._data), x._distaxis)
304
305
306
307
308
309
310
311
312
313
314
315
316
317


def abs(a, out=None):
    return _math_helper(a, np.abs, out)


def exp(a, out=None):
    return _math_helper(a, np.exp, out)


def log(a, out=None):
    return _math_helper(a, np.log, out)


Martin Reinecke's avatar
Martin Reinecke committed
318
319
320
321
def tanh(a, out=None):
    return _math_helper(a, np.tanh, out)


322
323
324
325
326
def sqrt(a, out=None):
    return _math_helper(a, np.sqrt, out)


def from_object(object, dtype=None, copy=True):
Martin Reinecke's avatar
Martin Reinecke committed
327
328
329
    return data_object(object._shape, np.array(object._data, dtype=dtype,
                                               copy=copy),
                       distaxis=object._distaxis)
330
331


Martin Reinecke's avatar
Martin Reinecke committed
332
333
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
334
335
336
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
337
def from_random(random_type, shape, dtype=np.float64, **kwargs):
338
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
339
340
341
342
343
344
345
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
346

Martin Reinecke's avatar
Martin Reinecke committed
347

Martin Reinecke's avatar
Martin Reinecke committed
348
349
350
351
def local_data(arr):
    return arr._data


352
353
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
354
    if distaxis < 0:
355
356
357
358
359
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
360
361
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
362
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
363
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
364
365


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
366
367
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
368
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
369
    return res
Martin Reinecke's avatar
Martin Reinecke committed
370
371
372
373
374
375


def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
376
def from_local_data(shape, arr, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
377
378
379
    return data_object(shape, arr, distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
380
381
def from_global_data(arr, distaxis=0):
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
382
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
383
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
384
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
385
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
386
387
388
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
389
390
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
391
392
393
394
395
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
396
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
397
398
399
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
400
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
401
402
403
404
405
406
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
407
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
408
409
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
410
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
411
                break
Martin Reinecke's avatar
Martin Reinecke committed
412

Martin Reinecke's avatar
Martin Reinecke committed
413
    if arr._distaxis == -1:  # all data available, just pick the proper subset
Martin Reinecke's avatar
Martin Reinecke committed
414
        return from_global_data(arr._data, dist)
Martin Reinecke's avatar
Martin Reinecke committed
415
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
416
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
417
418
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
419
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
420
421
422
423
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
424
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
425
426
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
427
428
429
430
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
431
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
432
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
433

Martin Reinecke's avatar
Martin Reinecke committed
434
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
435
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
436
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
437
438
439
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
440
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
441
442
443
444
445
446
447
448
449
450
451
452
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
453
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
454
455
456
457
458
459
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
460
461
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
462
463
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
464
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
465
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
466
467
468
469
470
471
472
473
474
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
        arrnew = empty(arr.shape, dtype=arr.dtype, distaxis=dist)
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
475
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
476
477
478
479
            sz = rsz[i]//arr._data.itemsize
            arrnew._data[rslice].flat = rbuf[ofs:ofs+sz]
            ofs += sz
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
480
481


Martin Reinecke's avatar
Martin Reinecke committed
482
483
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
484
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
485
486
487
488
489
490
491
492
493
494
495
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
496
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
497
498
499
500
501
502
503
504
505
506
507
508
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
    arrnew = empty((arr.shape[1], arr.shape[0]), dtype=arr.dtype, distaxis=0)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
509
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
510
511
512
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
513
        arrnew._data[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
514
515
516
517
        ofs += sz
    return arrnew


Martin Reinecke's avatar
Martin Reinecke committed
518
519
def default_distaxis():
    return 0
520
521
522
523
524
525
526
527


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable