nifty_lm.py 79.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41
42
43
44

from nifty.nifty_core import space,\
                             point_space,\
                             field
45
from nifty.keepers import about,\
46
47
                    global_configuration as gc,\
                    global_dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
48
from nifty.nifty_paradict import lm_space_paradict,\
49
50
51
52
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices

csongor's avatar
csongor committed
53
from nifty.nifty_mpi_data import distributed_data_object
54
from nifty.nifty_mpi_data import STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
55

Ultimanet's avatar
Ultimanet committed
56
from nifty.nifty_random import random
57

Ultima's avatar
Ultima committed
58
59
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
60

61
62
63
LM_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
HP_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
64
65


66
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
86
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
116
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
117
118
119
120
121
122
123
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
124
125

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
csongor's avatar
csongor committed
126
                 datamodel='not', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
127
128
129
130
131
132
133
134
135
136
137
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
138
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
154

155
        # check imports
Ultima's avatar
Ultima committed
156
        if not gc['use_libsharp'] and not gc['use_healpy']:
157
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
158
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
159

Ultima's avatar
Ultima committed
160
161
        self._cache_dict = {'check_codomain': {}}

162
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
163

164
165
166
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
theos's avatar
theos committed
167
            about.warnings.cprint("WARNING: data type set to complex128.")
168
169
            dtype = np.dtype('complex128')
        self.dtype = dtype
170

171
        # set datamodel
csongor's avatar
csongor committed
172
        if datamodel not in ['not']:
theos's avatar
theos committed
173
174
175
176
177
178
179
            about.warnings.cprint(
                "WARNING: %s is not a recommended datamodel for lm_space."
                % datamodel)
        if datamodel not in LM_DISTRIBUTION_STRATEGIES:
            raise ValueError(about._errors.cstring(
                "ERROR: %s is not a valid datamodel" % datamodel))

180
        self.datamodel = datamodel
181

Marco Selig's avatar
Marco Selig committed
182
        self.discrete = True
183
        self.harmonic = True
184
        self.distances = (np.float(1),)
185
        self.comm = self._parse_comm(comm)
186
187
188
189
190
191
192

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    datamodel=self.datamodel,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
193

194
195
    @property
    def para(self):
196
        temp = np.array([self.paradict['lmax'],
197
198
                         self.paradict['mmax']], dtype=int)
        return temp
199

200
201
202
203
204
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
205
206
207
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
208
            if key in ['_cache_dict', 'power_indices']:
Ultima's avatar
Ultima committed
209
210
211
212
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

Ultima's avatar
Ultima committed
213
214
215
216
217
218
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
219
                if ii[0] not in ['_cache_dict', 'power_indices', 'comm']]
Ultima's avatar
Ultima committed
220
221
222
223
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

224
    def copy(self):
225
226
227
228
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

229
    def get_shape(self):
Ultima's avatar
Ultima committed
230
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
231
232
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
233
234

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
249
250
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
251
        mmax = self.paradict['mmax']
252
253
254
255
256
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
257

258
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
259
        """
260
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
261

262
263
264
265
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
266
267
268

            Parameters
            ----------
269
270
271
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
272
273
274

            Returns
            -------
275
276
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
277

278
279
280
281
282
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
283
        """
284
285
286
287
288
289
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
290

theos's avatar
theos committed
291
292
293
294
    def _cast_to_d2o(self, x, dtype=None, **kwargs):
        casted_x = super(lm_space, self)._cast_to_d2o(x=x,
                                                      dtype=dtype,
                                                      **kwargs)
295
296
        lmax = self.paradict['lmax']
        complexity_mask = casted_x[:lmax+1].iscomplex()
theos's avatar
theos committed
297
        if complexity_mask.any():
Ultima's avatar
Ultima committed
298
            about.warnings.cprint("WARNING: Taking the absolute values for " +
299
                                  "all complex entries where lmax==0")
300
            casted_x[:lmax+1] = abs(casted_x[:lmax+1])
301
302
        return casted_x

303
    # TODO: Extend to binning/log
304
305
306
307
308
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
309
310
311
312
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

Ultima's avatar
Ultima committed
313
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
333
334
        if codomain is None:
            return False
335

336
337
338
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
339

340
341
342
        if self.comm is not codomain.comm:
            return False

343
344
345
        if self.datamodel is not codomain.datamodel:
            return False

346
347
348
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
349
            # nlon==2*lmax+1
350
351
352
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
353
354
                return True

355
356
357
358
359
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
360
361
362
363
                return True

        return False

364
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
390
391
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
392
393
394
395
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
396
397
398
399
400
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
401
            else:
402
403
404
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
405
406
407
408
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            datamodel=self.datamodel,
                            comm=self.comm)

409
410
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
411
412
413
414
            return hp_space(nside=nside,
                            datamodel=self.datamodel,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
415
        else:
416
            raise ValueError(about._errors.cstring(
417
418
419
420
421
422
423
424
425
426
427
428
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
429

430
431
432
433
434
435
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
436

437
438
439
440
441
442
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
461
            x = 0
462

Ultima's avatar
Ultima committed
463
        elif arg['random'] == "pm1":
464
465
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())

Ultima's avatar
Ultima committed
466
        elif arg['random'] == "gau":
467
468
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
469
470
                           mean=arg['mean'],
                           std=arg['std'])
471

Ultima's avatar
Ultima committed
472
        elif arg['random'] == "syn":
473
474
475
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
476
477
                if gc['use_libsharp']:
                    x = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
478
                else:
Ultima's avatar
Ultima committed
479
                    x = hp.synalm(arg['spec'].astype(np.complex128),
480
481
                                  lmax=lmax, mmax=mmax).astype(np.complex64)
            else:
Ultima's avatar
Ultima committed
482
483
                if gc['use_healpy']:
                    x = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
484
                else:
Ultima's avatar
Ultima committed
485
                    x = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
486

Ultima's avatar
Ultima committed
487
        elif arg['random'] == "uni":
488
489
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
490
491
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
492
493
494

        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
495
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
496

497
498
        return self.cast(x)

499
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
516
517
518
519
        x = self.cast(x)
        y = self.cast(y)

        lmax = self.paradict['lmax']
520
521
522
523
524
525
526
527
528

        x_low = x[:lmax + 1]
        x_high = x[lmax + 1:]
        y_low = y[:lmax + 1]
        y_high = y[lmax + 1:]

        dot = (x_low.real * y_low.real).sum()
        dot += 2 * (x_high.real * y_high.real).sum()
        dot += 2 * (x_high.imag * y_high.imag).sum()
529
530
        return dot

531
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
532
533
534
535
536
537
538
539
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
540
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
541
542
543
544
545
546
547
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
548
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
549

550
551
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
552

553
554
555
556
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
557

558
559
560
561
562
563
564
        if self.datamodel != 'not':
            about.warnings.cprint(
                "WARNING: Field data is consolidated to all nodes for "
                "external alm2map method!")

        np_x = x.get_full_data()

565
566
567
568
569
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
570

571
            # transform
572
            if self.dtype == np.dtype('complex64'):
573
574
                np_Tx = gl.alm2map_f(np_x, nlat=nlat, nlon=nlon,
                                     lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
575
            else:
576
577
578
                np_Tx = gl.alm2map(np_x, nlat=nlat, nlon=nlon,
                                   lmax=lmax, mmax=mmax, cl=False)
            Tx = codomain.cast(np_Tx)
Marco Selig's avatar
Marco Selig committed
579

580
581
582
583
584
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

585
            # transform
586
587
588
589
590
            np_x = np_x.astype(np.complex128, copy=False)
            np_Tx = hp.alm2map(np_x, nside, lmax=lmax,
                               mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
                               pol=True, inplace=False)
            Tx = codomain.cast(np_Tx)
Marco Selig's avatar
Marco Selig committed
591
592

        else:
593
594
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
595

596
597
598
599
600
        # re-weight if discrete
        if codomain.discrete:
            Tx = codomain.calc_weight(Tx, power=0.5)

        return codomain.cast(Tx)
Marco Selig's avatar
Marco Selig committed
601

602
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
621
        x = self.cast(x)
622
        # check sigma
623
        if sigma == 0:
Ultima's avatar
Ultima committed
624
            return self.unary_operation(x, op='copy')
625
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
626
            about.infos.cprint("INFO: invalid sigma reset.")
627
628
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
629
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
630

theos's avatar
theos committed
631
632
633
634
635
636
637
        if self.datamodel != 'not':
            about.warnings.cprint(
                "WARNING: Field data is consolidated to all nodes for "
                "external smoothalm method!")

        np_x = x.get_full_data()

Ultima's avatar
Ultima committed
638
        if gc['use_healpy']:
theos's avatar
theos committed
639
640
641
642
643
644
645
            np_smoothed_x = hp.smoothalm(np_x,
                                         fwhm=0.0,
                                         sigma=sigma,
                                         pol=True,
                                         mmax=self.paradict['mmax'],
                                         verbose=False,
                                         inplace=False)
Marco Selig's avatar
Marco Selig committed
646
        else:
theos's avatar
theos committed
647
648
649
650
651
652
653
            np_smoothed_x = gl.smoothalm(np_x,
                                         lmax=self.paradict['lmax'],
                                         mmax=self.paradict['mmax'],
                                         fwhm=0.0,
                                         sigma=sigma,
                                         overwrite=False)
        return self.cast(np_smoothed_x)
Marco Selig's avatar
Marco Selig committed
654

655
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
670
671
672
673
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

theos's avatar
theos committed
674
675
676
677
678
679
680
        if self.datamodel != 'not':
            about.warnings.cprint(
                "WARNING: Field data is consolidated to all nodes for "
                "external anaalm/alm2cl method!")

        np_x = x.get_full_data()

681
        # power spectrum
682
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
683
            if gc['use_libsharp']:
theos's avatar
theos committed
684
                return gl.anaalm_f(np_x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
685
            else:
theos's avatar
theos committed
686
687
688
689
690
691
692
                np_x = np_x.astype(np.complex128, copy=False)
                result = hp.alm2cl(np_x,
                                   alms2=None,
                                   lmax=lmax,
                                   mmax=mmax,
                                   lmax_out=lmax,
                                   nspec=None)
Marco Selig's avatar
Marco Selig committed
693
        else:
Ultima's avatar
Ultima committed
694
            if gc['use_healpy']:
theos's avatar
theos committed
695
696
697
698
699
700
                return hp.alm2cl(np_x,
                                 alms2=None,
                                 lmax=lmax,
                                 mmax=mmax,
                                 lmax_out=lmax,
                                 nspec=None)
Marco Selig's avatar
Marco Selig committed
701
            else:
theos's avatar
theos committed
702
703
704
705
706
707
708
709
710
711
712
713
                return gl.anaalm(np_x,
                                 lmax=lmax,
                                 mmax=mmax)

        if self.dtype == np.dtype('complex64'):
            result = result.astype(np.float32, copy=False)
        elif self.dtype == np.dtype('complex128'):
            result = result.astype(np.float64, copy=False)
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: dtype %s not known to calc_power method." %
                str(self.dtype)))
Marco Selig's avatar
Marco Selig committed
714

715
716
717
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
theos's avatar
theos committed
762
763
764
765
766
        try:
            x = x.get_full_data()
        except AttributeError:
            pass

767
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
768
769
770
771
772
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

773
774
775
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
776

777
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
778
            if(vmin is None):
779
780
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
781
            if(vmax is None):
782
783
784
785
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
786
            if(mono):
787
788
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
789
790

            if(other is not None):
791
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
792
793
                    other = list(other)
                    for ii in xrange(len(other)):
794
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
795
796
797
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
798
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
799
800
801
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
802
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
803
                for ii in xrange(len(other)):
804
805
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
806
                    if(mono):
807
808
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
809
810
811
                if(legend):
                    ax0.legend()

812
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
813
            ax0.set_xlabel(r"$\ell$")
814
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
815
816
817
818
819
820
821
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
822
823
824
825
826
827
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
828
829
830
831
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
832
833
834
835
836
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
837
838
            else:
                if(vmin is None):
839
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
840
                if(vmax is None):
841
842
843
844
845
846
847
848
849
850
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
851
                lm = 0
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
868
869
                else:
                    n_ = None
870
871
872
873
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
874
                ax0.set_xlabel(r"$\ell$")
875
876
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
877
878
879
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
880
881
882
883
884
885
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
886
887
888
889
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
890
891
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
892
893
                ax0.set_title(title)

894
895
896
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
897
898
899
900
            pl.close(fig)
        else:
            fig.canvas.draw()

901
902
903
904
905
906
907
908
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
909
910


911
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
929
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
930
931
932
933
934
935
936
937
938
939
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
940
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
941
942
943
944
945
946
947
948
949
950
951
952
953
954

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
955
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
956
957
958
959
960
961
962
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
963

Ultima's avatar
Ultima committed
964
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
csongor's avatar
csongor committed
965
                 datamodel='not', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
966
967
968
969
970
971
972
973
974
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
975
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
990
        # check imports
Ultima's avatar
Ultima committed
991
        if not gc['use_libsharp']:
992
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
993
                "ERROR: libsharp_wrapper_gl not loaded."))
994

Ultima's avatar
Ultima committed
995
        self._cache_dict = {'check_codomain': {}}
996
        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
997

998
999
1000
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
1001
            about.warnings.cprint("WARNING: data type set to default.")
1002
1003
            dtype = np.dtype('float')
        self.dtype = dtype
1004

1005
        # set datamodel
csongor's avatar
csongor committed
1006
        if datamodel not in ['not']:
1007
            about.warnings.cprint("WARNING: datamodel set to default.")
1008
        self.datamodel = datamodel
Marco Selig's avatar
Marco Selig committed
1009
1010

        self.discrete = False
1011
        self.harmonic = False
csongor's avatar
csongor committed
1012
        self.distances = tuple(gl.vol(self.paradict['nlat'],
1013
                                      nlon=self.paradict['nlon']
csongor's avatar
csongor committed
1014
                                      ).astype(np.float))
1015
        self.comm = self._parse_comm(comm)
1016
1017
1018

    @property
    def para(self):
1019
        temp = np.array([self.paradict['nlat'],
1020
1021
                         self.paradict['nlon']], dtype=int)
        return temp
1022

1023
1024
1025
1026
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
1027

1028
    def copy(self):
1029
1030
1031
1032
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

1033
    def get_shape(self):
1034
1035
1036
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
1050
1051
1052
1053
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1086
    # TODO: Extend to binning/log
1087
1088
1089
1090
1091
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1092
1093
1094
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1095

Ultima's avatar
Ultima committed
1096
    def _check_codomain(self, codomain):
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1118
1119
1120
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1121
1122
1123
        if self.datamodel is not codomain.datamodel:
            return False

1124
1125
1126
        if self.comm is not codomain.comm:
            return False

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1155
1156
1157
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            datamodel=self.datamodel,
                            comm=self.comm)
1158
        else:
1159
1160
1161
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            datamodel=self.datamodel,
                            comm=self.comm)
1162

1163
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1181
1182
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1193
1194
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1195
1196
1197
1198
1199
1200
1201
1202
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1203
        arg = random.parse_arguments(self, **kwargs)
1204

1205
1206
        if(arg is None):
            x = np.zeros(self.get_shape(), dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
1207

Ultima's avatar
Ultima committed
1208
        elif(arg['random'] == "pm1"):
1209
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
1210

Ultima's avatar
Ultima committed
1211
        elif(arg['random'] == "gau"):
1212
1213
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1214
1215
                           mean=arg['mean'],
                           std=arg['std'])
Marco Selig's avatar
Marco Selig committed
1216

Ultima's avatar
Ultima committed
1217
        elif(arg['random'] == "syn"):
1218
1219
1220
1221
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
csongor's avatar
csongor committed
1222
                x = self.cast(gl.synfast_f(arg['spec'],
1223
                                 nlat=nlat, nlon=nlon,
1224
                                 lmax=lmax, mmax=lmax, alm=False))
Marco Selig's avatar
Marco Selig committed
1225
            else:
csongor's avatar
csongor committed
1226
                x = self.cast(gl.synfast(arg['spec'],
1227
                               nlat=nlat, nlon=nlon,
1228
                               lmax=lmax, mmax=lmax, alm=False))
1229
1230
1231
            # weight if discrete
            if self.discrete:
                x = self.calc_weight(x, power=0.5)
Marco Selig's avatar
Marco Selig committed
1232

Ultima's avatar
Ultima committed
1233
        elif(arg['random'] == "uni"):
1234
1235
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1236
1237