energy_operators.py 18 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
from ..multi_domain import MultiDomain
from ..multi_field import MultiField
from ..sugar import makeDomain, makeOp
Philipp Arras's avatar
Philipp Arras committed
26
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
28
from .sampling_enabler import SamplingDtypeSetter, SamplingEnabler
29
from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
30
from .simple_linear_operators import VdotOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
36


def _check_sampling_dtype(domain, dtypes):
    if dtypes is None:
        return
    if isinstance(domain, DomainTuple):
Philipp Arras's avatar
Philipp Arras committed
37
38
        np.dtype(dtypes)
        return
Philipp Arras's avatar
Philipp Arras committed
39
    elif isinstance(domain, MultiDomain):
Philipp Arras's avatar
Philipp Arras committed
40
41
42
43
44
45
46
        if isinstance(dtypes, dict):
            for dt in dtypes.values():
                np.dtype(dt)
            if set(domain.keys()) == set(dtypes.keys()):
                return
        else:
            np.dtype(dtypes)
Philipp Arras's avatar
Philipp Arras committed
47
            return
Philipp Arras's avatar
Philipp Arras committed
48
    raise TypeError
Philipp Arras's avatar
Philipp Arras committed
49
50


51
52
53
54
def _iscomplex(dtype):
    return np.issubdtype(dtype, np.complexfloating)


Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
62
63
64
65
def _field_to_dtype(field):
    if isinstance(field, Field):
        dt = field.dtype
    elif isinstance(field, MultiField):
        dt = {kk: ff.dtype for kk, ff in field.items()}
    else:
        raise TypeError
    _check_sampling_dtype(field.domain, dt)
    return dt


Martin Reinecke's avatar
Martin Reinecke committed
66
class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
67
    """Operator which has a scalar domain as target domain.
68

Martin Reinecke's avatar
Martin Reinecke committed
69
    It is intended as an objective function for field inference.
70

Philipp Arras's avatar
Philipp Arras committed
71
72
73
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
74
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
75
       divergence.
76
    """
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    _target = DomainTuple.scalar_domain()


80
81
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
82

Philipp Arras's avatar
Philipp Arras committed
83
84
85
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
86
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
87
    """
Philipp Arras's avatar
Philipp Arras committed
88

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    def __init__(self, domain):
        self._domain = domain

Philipp Arras's avatar
Philipp Arras committed
92
    def apply(self, x):
93
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
94
95
        if x.jac is None:
            return x.vdot(x)
Philipp Arras's avatar
Philipp Arras committed
96
97
        res = x.val.vdot(x.val)
        return x.new(res, VdotOperator(2*x.val))
Martin Reinecke's avatar
Martin Reinecke committed
98

Martin Reinecke's avatar
Martin Reinecke committed
99

Martin Reinecke's avatar
Martin Reinecke committed
100
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
101
    """Computes the L2-norm of a Field or MultiField with respect to a
102
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
103
104
105

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
106
107
108

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
109
    endo : EndomorphicOperator
110
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
111
    """
Philipp Arras's avatar
Philipp Arras committed
112
113

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
114
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
115
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
116
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
117
118
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
119

Philipp Arras's avatar
Philipp Arras committed
120
    def apply(self, x):
121
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
122
        if x.jac is None:
Philipp Arras's avatar
Philipp Arras committed
123
124
125
            return 0.5*x.vdot(self._op(x))
        res = 0.5*x.val.vdot(self._op(x.val))
        return x.new(res, VdotOperator(self._op(x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
126

Philipp Arras's avatar
Philipp Arras committed
127

128
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
129
    """Computes the negative log pdf of a Gaussian with unknown covariance.
130

Reimar Leike's avatar
Reimar Leike committed
131
    The covariance is assumed to be diagonal.
132
133

    .. math ::
134
        E(s,D) = - \\log G(s, C) = 0.5 (s)^\\dagger C (s) - 0.5 tr log(C),
135
136

    an information energy for a Gaussian distribution with residual s and
137
    inverse diagonal covariance C.
Reimar Leike's avatar
Reimar Leike committed
138
139
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
140
141
142

    Parameters
    ----------
143
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
144
        domain of the residual and domain of the covariance diagonal.
145

146
    residual_key : key
Philipp Arras's avatar
Philipp Arras committed
147
        Residual key of the Gaussian.
148

149
    inverse_covariance_key : key
150
        Inverse covariance diagonal key of the Gaussian.
Philipp Arras's avatar
Philipp Arras committed
151

152
    sampling_dtype : np.dtype
Philipp Arras's avatar
Philipp Arras committed
153
        Data type of the samples. Usually either 'np.float*' or 'np.complex*'
154
155
    """

Philipp Arras's avatar
Philipp Arras committed
156
    def __init__(self, domain, residual_key, inverse_covariance_key, sampling_dtype):
Philipp Arras's avatar
Philipp Arras committed
157
158
        self._kr = str(residual_key)
        self._ki = str(inverse_covariance_key)
Philipp Arras's avatar
Philipp Arras committed
159
        dom = DomainTuple.make(domain)
Philipp Arras's avatar
Philipp Arras committed
160
        self._domain = MultiDomain.make({self._kr: dom, self._ki: dom})
Philipp Arras's avatar
Philipp Arras committed
161
162
        self._dt = {self._kr: sampling_dtype, self._ki: np.float64}
        _check_sampling_dtype(self._domain, self._dt)
163
        self._cplx = _iscomplex(sampling_dtype)
164

Philipp Arras's avatar
Philipp Arras committed
165
    def apply(self, x):
166
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
167
        r, i = x[self._kr], x[self._ki]
Philipp Arras's avatar
Philipp Arras committed
168
169
170
171
        if self._cplx:
            res = 0.5*r.vdot(r*i.real).real - i.ptw("log").sum()
        else:
            res = 0.5*(r.vdot(r*i) - i.ptw("log").sum())
Martin Reinecke's avatar
more    
Martin Reinecke committed
172
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
173
            return res
Philipp Arras's avatar
Philipp Arras committed
174
175
        met = i.val if self._cplx else 0.5*i.val
        met = MultiField.from_dict({self._kr: i.val, self._ki: met**(-2)})
Philipp Arras's avatar
Philipp Arras committed
176
        return res.add_metric(SamplingDtypeSetter(makeOp(met), self._dt))
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    # def _simplify_for_constant_input_nontrivial(self, c_inp):
    #     from .simplify_for_const import ConstantEnergyOperator
    #     assert len(c_inp.keys()) == 1
    #     key = c_inp.keys()[0]
    #     assert key in self._domain.keys()
    #     cst = c_inp[key]
    #     if key == self._kr:
    #         res = _SpecialGammaEnergy(cst).ducktape(self._ki)
    #     else:
    #         dt = self._dt[self._kr]
    #         res = GaussianEnergy(inverse_covariance=makeOp(cst),
    #                              sampling_dtype=dt).ducktape(self._kr)
    #         trlog = cst.log().sum().val_rw()
    #         if not _iscomplex(dt):
    #             trlog /= 2
    #         res = res + ConstantEnergyOperator(res.domain, -trlog)
    #     res = res + ConstantEnergyOperator(self._domain, 0.)
    #     assert res.domain is self.domain
    #     assert res.target is self.target
    #     return None, res
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218


class _SpecialGammaEnergy(EnergyOperator):
    def __init__(self, residual):
        self._domain = DomainTuple.make(residual.domain)
        self._resi = residual
        self._cplx = _iscomplex(self._resi.dtype)
        self._scale = ScalingOperator(self._domain, 1 if self._cplx else .5)

    def apply(self, x):
        self._check_input(x)
        r = self._resi
        if self._cplx:
            res = 0.5*(r*x.real).vdot(r).real - x.ptw("log").sum()
        else:
            res = 0.5*((r*x).vdot(r) - x.ptw("log").sum())
        if not x.want_metric:
            return res
        met = makeOp((self._scale(x.val))**(-2))
        return res.add_metric(SamplingDtypeSetter(met, self._resi.dtype))

Martin Reinecke's avatar
Martin Reinecke committed
219
220

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
221
    """Computes a negative-log Gaussian.
222

Philipp Arras's avatar
Philipp Arras committed
223
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
224

Philipp Arras's avatar
Philipp Arras committed
225
226
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
227

Philipp Arras's avatar
Philipp Arras committed
228
229
    an information energy for a Gaussian distribution with mean m and
    covariance D.
230

Philipp Arras's avatar
Philipp Arras committed
231
232
233
234
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
235
236
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
237
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
238
239
240
241
242
243
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
244
    """
Martin Reinecke's avatar
Martin Reinecke committed
245

Philipp Arras's avatar
Philipp Arras committed
246
    def __init__(self, mean=None, inverse_covariance=None, domain=None, sampling_dtype=None):
Martin Reinecke's avatar
Martin Reinecke committed
247
248
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
249
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
250
251
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
252
253
254
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
255
256
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
257
258
259
260
261
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Philipp Arras's avatar
Philipp Arras committed
262
263
264
265
266
267
268
269
270
271
272

        # Infer sampling dtype
        if self._mean is None:
            _check_sampling_dtype(self._domain, sampling_dtype)
        else:
            if sampling_dtype is None:
                sampling_dtype = _field_to_dtype(self._mean)
            else:
                if sampling_dtype != _field_to_dtype(self._mean):
                    raise ValueError("Sampling dtype and mean not compatible")

Philipp Arras's avatar
Philipp Arras committed
273
        self._icov = inverse_covariance
274
        if inverse_covariance is None:
275
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Philipp Arras's avatar
Philipp Arras committed
276
            self._met = ScalingOperator(self._domain, 1)
Martin Reinecke's avatar
Martin Reinecke committed
277
        else:
278
            self._op = QuadraticFormOperator(inverse_covariance)
Philipp Arras's avatar
Philipp Arras committed
279
            self._met = inverse_covariance
Philipp Arras's avatar
Philipp Arras committed
280
        if sampling_dtype is not None:
281
            self._met = SamplingDtypeSetter(self._met, sampling_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
282
283

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
284
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
285
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
286
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
287
        else:
Philipp Arras's avatar
Philipp Arras committed
288
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
289
290
                raise ValueError("domain mismatch")

Philipp Arras's avatar
Philipp Arras committed
291
    def apply(self, x):
292
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
293
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
294
        res = self._op(residual).real
Martin Reinecke's avatar
more    
Martin Reinecke committed
295
        if x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
296
297
            return res.add_metric(self._met)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
298

Philipp Arras's avatar
Philipp Arras committed
299
300
301
302
    def __repr__(self):
        dom = '()' if isinstance(self.domain, DomainTuple) else self.domain.keys()
        return f'GaussianEnergy {dom}'

Martin Reinecke's avatar
Martin Reinecke committed
303
304

class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
305
306
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
307

Philipp Arras's avatar
Philipp Arras committed
308
    Represents up to an f-independent term :math:`log(d!)`:
309

Philipp Arras's avatar
Philipp Arras committed
310
311
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
312

Philipp Arras's avatar
Philipp Arras committed
313
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
314
    the counts.
Philipp Arras's avatar
Philipp Arras committed
315
316
317
318
319
320

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
321
    """
Philipp Arras's avatar
Philipp Arras committed
322

323
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
324
325
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
326
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
327
            raise ValueError
328
329
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
330

Philipp Arras's avatar
Philipp Arras committed
331
    def apply(self, x):
332
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
333
        res = x.sum() - x.ptw("log").vdot(self._d)
Martin Reinecke's avatar
more    
Martin Reinecke committed
334
        if not x.want_metric:
335
            return res
336
        return res.add_metric(SamplingDtypeSetter(makeOp(1./x.val), np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
337

338

339
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
340
    """Computes the negative log-likelihood of the inverse gamma distribution.
341
342
343

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
344
345
346
347
348
349
350
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
351
352
353
354
355
356
357

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
358
    """
Philipp Arras's avatar
Philipp Arras committed
359

360
361
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
362
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
363
        self._domain = DomainTuple.make(beta.domain)
364
365
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
366
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
367
368
369
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
Philipp Arras's avatar
Philipp Arras committed
370
371
372
373
        if not self._beta.dtype == np.float64:
            # FIXME Add proper complex support for this energy
            raise TypeError
        self._sampling_dtype = _field_to_dtype(self._beta)
374

Philipp Arras's avatar
Philipp Arras committed
375
    def apply(self, x):
376
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
377
        res = x.ptw("log").vdot(self._alphap1) + x.ptw("reciprocal").vdot(self._beta)
Martin Reinecke's avatar
more    
Martin Reinecke committed
378
        if not x.want_metric:
379
            return res
Philipp Arras's avatar
Philipp Arras committed
380
381
        met = makeOp(self._alphap1/(x.val**2))
        if self._sampling_dtype is not None:
382
            met = SamplingDtypeSetter(met, self._sampling_dtype)
Philipp Arras's avatar
Philipp Arras committed
383
        return res.add_metric(met)
384
385


386
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
387
    """Computes likelihood energy corresponding to Student's t-distribution.
388
389

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
390
391
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
392

Philipp Arras's avatar
Philipp Arras committed
393
394
    where f is a field defined on `domain`. Assumes that the data is `float64`
    for sampling.
395
396
397

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
398
399
    domain : `Domain` or `DomainTuple`
        Domain of the operator
Reimar Leike's avatar
Reimar Leike committed
400
    theta : Scalar or Field
401
402
403
        Degree of freedom parameter for the student t distribution
    """

Philipp Arras's avatar
Philipp Arras committed
404
    def __init__(self, domain, theta):
405
406
407
        self._domain = DomainTuple.make(domain)
        self._theta = theta

Philipp Arras's avatar
Philipp Arras committed
408
    def apply(self, x):
409
        self._check_input(x)
410
        res = (((self._theta+1)/2)*(x**2/self._theta).ptw("log1p")).sum()
Martin Reinecke's avatar
more    
Martin Reinecke committed
411
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
412
            return res
413
        met = makeOp((self._theta+1) / (self._theta+3), self.domain)
Philipp Arras's avatar
Philipp Arras committed
414
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
415
416


Martin Reinecke's avatar
Martin Reinecke committed
417
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
418
    """Computes likelihood energy of expected event frequency constrained by
419
420
    event data.

Philipp Arras's avatar
Philipp Arras committed
421
422
423
424
425
426
427
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

428
429
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
430
    d : Field
Philipp Arras's avatar
Philipp Arras committed
431
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
432
    """
Philipp Arras's avatar
Philipp Arras committed
433

434
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
435
436
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
437
        if np.any(np.logical_and(d.val != 0, d.val != 1)):
Philipp Arras's avatar
Philipp Arras committed
438
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
439
        self._d = d
440
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
441

Philipp Arras's avatar
Philipp Arras committed
442
    def apply(self, x):
443
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
444
        res = -x.ptw("log").vdot(self._d) + (1.-x).ptw("log").vdot(self._d-1.)
Martin Reinecke's avatar
more    
Martin Reinecke committed
445
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
446
            return res
Philipp Arras's avatar
Philipp Arras committed
447
        met = makeOp(1./(x.val*(1. - x.val)))
448
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
449
450


451
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
452
453
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
454

Philipp Arras's avatar
Philipp Arras committed
455
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
456

Philipp Arras's avatar
Philipp Arras committed
457
458
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
459

Martin Reinecke's avatar
Martin Reinecke committed
460
    Other field priors can be represented via transformations of a white
461
462
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
463
    By implementing prior information this way, the field prior is represented
464
465
466
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
467
468
469
470
471
472
473
474
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
475
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
476
        to use to draw Gaussian samples.
Philipp Arras's avatar
Philipp Arras committed
477
478
    prior_dtype : numpy.dtype or dict of numpy.dtype, optional
        Data type of prior used for sampling.
Philipp Arras's avatar
Philipp Arras committed
479
480
481
482
483

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
484
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
485
    """
Philipp Arras's avatar
Philipp Arras committed
486

Philipp Arras's avatar
Philipp Arras committed
487
    def __init__(self, lh, ic_samp=None, _c_inp=None, prior_dtype=np.float64):
Martin Reinecke's avatar
Martin Reinecke committed
488
        self._lh = lh
Philipp Arras's avatar
Philipp Arras committed
489
        self._prior = GaussianEnergy(domain=lh.domain, sampling_dtype=prior_dtype)
490
491
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
492
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
493
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
494

Philipp Arras's avatar
Philipp Arras committed
495
    def apply(self, x):
496
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
497
        if not x.want_metric or self._ic_samp is None:
Philipp Arras's avatar
Philipp Arras committed
498
            return (self._lh + self._prior)(x)
Philipp Arras's avatar
Philipp Arras committed
499
500
        lhx, prx = self._lh(x), self._prior(x)
        return (lhx+prx).add_metric(SamplingEnabler(lhx.metric, prx.metric, self._ic_samp))
Martin Reinecke's avatar
Martin Reinecke committed
501

Philipp Arras's avatar
Philipp Arras committed
502
503
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
504
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
505
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
506

507
508
509
    # def _simplify_for_constant_input_nontrivial(self, c_inp):
    #     out, lh1 = self._lh.simplify_for_constant_input(c_inp)
    #     return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)
510

Martin Reinecke's avatar
Martin Reinecke committed
511

Martin Reinecke's avatar
Martin Reinecke committed
512
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
513
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
514

515
516
517
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
518
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
519
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
520
521
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
522

Philipp Arras's avatar
Docs    
Philipp Arras committed
523
524
525
526
527
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
528

Philipp Arras's avatar
Docs    
Philipp Arras committed
529
530
531
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
532
    """
Martin Reinecke's avatar
Martin Reinecke committed
533
534
535

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
536
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
537
538
        self._res_samples = tuple(res_samples)

Philipp Arras's avatar
Philipp Arras committed
539
    def apply(self, x):
540
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
541
542
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap)/len(self._res_samples)