nifty_power.py 31 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                     __   ____   __
    ..                   /__/ /   _/ /  /_
    ..         __ ___    __  /  /_  /   _/  __   __
    ..       /   _   | /  / /   _/ /  /   /  / /  /
    ..      /  / /  / /  / /  /   /  /_  /  /_/  /
    ..     /__/ /__/ /__/ /__/    \___/  \___   /  power
    ..                                  /______/

    NIFTy offers a number of automatized routines for handling
    power spectra. It is possible to draw a field from a random distribution
    with a certain autocorrelation or, equivalently, with a certain
    power spectrum in its conjugate space (see :py:func:`field.random`). In
    NIFTy, it is usually assumed that such a field follows statistical
    homogeneity and isotropy. Fields which are only statistically homogeneous
    can also be created using the diagonal operator routine.

39 40
    At the moment, NIFTY offers several additional routines for power spectrum
    manipulation.
Marco Selig's avatar
Marco Selig committed
41 42 43

"""
from __future__ import division
44
from scipy.interpolate import interp1d as ip
45
#import numpy as np
Marco Selig's avatar
Marco Selig committed
46
from nifty_core import *
Marco Selig's avatar
Marco Selig committed
47 48 49
import smoothing as gs


50 51
##-----------------------------------------------------------------------------

52
def weight_power(domain,spec,power=1,pindex=None,pundex=None,**kwargs):
53 54 55 56 57 58 59 60 61 62 63
    """
        Weights a given power spectrum with the corresponding pixel volumes
        to a given power.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.
        spec : {scalar, ndarray, field}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
64
        pindex : ndarray, *optional*
65 66
            Indexing array giving the power spectrum index for each
            represented mode.
67
        pundex : list, *optional*
68 69 70 71 72 73 74
            Unindexing list undoing power indexing.

        Returns
        -------
        spev : ndarray
            Weighted power spectrum.

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

93 94 95 96 97 98 99 100 101 102 103
        Raises
        ------
        TypeError
            If `domain` is no space.
        ValueError
            If `domain` is no harmonic space.

    """
    ## check domain
    if(not isinstance(domain,space)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
104
    ## check implicit power indices
105 106
    if(pindex is None):
        try:
107 108
            domain.set_power_indices(**kwargs)
        except:
109
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        else:
            pindex = domain.power_indices.get("pindex")
            if(pundex is None):
                pundex = domain.power_indices.get("pundex")
            elif(not isinstance(pundex,list)):
                raise TypeError(about._errors.cstring("ERROR: invalid input."))
            elif(len(pundex)!=np.size(domain.dim(split=True))):
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(len(pundex))+" <> "+str(np.size(domain.dim(split=True)))+" )."))
    ## check explicit power indices
    else:
        pindex = np.array(pindex,dtype=np.int)
        if(not np.all(np.array(np.shape(pindex))==domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: shape mismatch ( "+str(np.array(np.shape(pindex)))+" <> "+str(domain.dim(split=True))+" )."))
        if(pundex is None):
            ## quick pundex
            pundex = list(np.unravel_index(np.unique(pindex,return_index=True,return_inverse=False)[1],pindex.shape,order='C'))
        elif(not isinstance(pundex,list)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))
        elif(len(pundex)!=np.size(domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(len(pundex))+" <> "+str(np.size(domain.dim(split=True)))+" )."))
130

131
    return np.real(domain.calc_weight(domain.enforce_power(spec,size=np.max(pindex,axis=None,out=None)+1)[pindex],power=power)[pundex])
132

Marco Selig's avatar
Marco Selig committed
133 134
##-----------------------------------------------------------------------------

135 136
##-----------------------------------------------------------------------------

137
def smooth_power(spec,domain=None,kindex=None,mode="2s",exclude=1,sigma=-1,**kwargs):
Marco Selig's avatar
Marco Selig committed
138
    """
139
        Smoothes a power spectrum via convolution with a Gaussian kernel.
Marco Selig's avatar
Marco Selig committed
140

141 142 143 144 145 146 147 148 149 150 151
        Parameters
        ----------
        spec : ndarray
            The power spectrum to be smoothed.
        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : ndarray, *optional*
            The array specifying the coordinate indices in conjugate space
            (default: None).
        mode : string, *optional*
            Specifies the smoothing mode (default: "2s") :
Marco Selig's avatar
Marco Selig committed
152

153 154 155
            - "ff" (smoothing in the harmonic basis using fast Fourier transformations)
            - "bf" (smoothing in the position basis by brute force)
            - "2s" (smoothing in the position basis restricted to a 2-`sigma` interval)
Marco Selig's avatar
Marco Selig committed
156

157 158 159 160 161 162
        exclude : scalar, *optional*
            Excludes the first power spectrum entries from smoothing, indicated by
            the given integer scalar (default = 1, the monopol is not smoothed).
        sigma : scalar, *optional*
            FWHM of Gaussian convolution kernel (default = -1, `sigma` is set
            automatically).
Marco Selig's avatar
Marco Selig committed
163

164 165 166 167
        Returns
        -------
        smoothspec : ndarray
            The smoothed power spectrum.
Marco Selig's avatar
Marco Selig committed
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).
Marco Selig's avatar
Marco Selig committed
186

187 188 189 190
        Raises
        ------
        KeyError
            If `mode` is unsupported.
Marco Selig's avatar
Marco Selig committed
191

Marco Selig's avatar
Marco Selig committed
192
    """
193 194 195 196 197 198 199 200 201
    ## check implicit kindex
    if(kindex is None):
        if(isinstance(domain,space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")
202

203 204
        else:
            raise TypeError(about._errors.cstring("ERROR: insufficient input."))
205 206 207
        ## check power spectrum
        spec = domain.enforce_power(spec,size=np.size(kindex))
    ## check explicit kindex
208
    else:
209 210 211 212 213 214 215
        kindex = np.sort(np.real(np.array(kindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

        ## check power spectrum
        if(isinstance(spec,field)):
            spec = spec.val.astype(kindex.dtype)
        elif(callable(spec)):
            try:
216
                spec = np.array(spec(kindex),dtype=kindex.dtype)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            except:
                TypeError(about._errors.cstring("ERROR: invalid power spectra function.")) ## exception in ``spec(kindex)``
        elif(np.isscalar(spec)):
            spec = np.array([spec],dtype=kindex.dtype)
        else:
            spec = np.array(spec,dtype=kindex.dtype)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if(not np.all(np.isfinite(spec))):
            raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
        elif(np.any(spec<0)):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
        elif(np.any(spec==0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if(np.size(spec)==1):
            spec = spec*np.ones(size,dtype=spec.dtype,order='C')
        ## size check
        elif(np.size(spec)<size):
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(spec))+" < "+str(size)+" )."))
        elif(np.size(spec)>size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == "+str(size)+" ).")
            spec = spec[:size]

243
    ## smoothing
Marco Selig's avatar
Marco Selig committed
244
    if(mode=="2s"):
245
        return gs.smooth_power_2s(spec,kindex,exclude=exclude,smooth_length=sigma)
Marco Selig's avatar
Marco Selig committed
246
    elif(mode=="ff"):
247
        return gs.smooth_power(spec,kindex,exclude=exclude,smooth_length=sigma)
Marco Selig's avatar
Marco Selig committed
248
    elif(mode=="bf"):
249
        return gs.smooth_power_bf(spec,kindex,exclude=exclude,smooth_length=sigma)
Marco Selig's avatar
Marco Selig committed
250 251
    else:
        raise KeyError(about._errors.cstring("ERROR: unsupported mode '"+str(mode)+"'."))
Marco Selig's avatar
Marco Selig committed
252 253 254

##-----------------------------------------------------------------------------

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
##=============================================================================

def _calc_laplace(kindex): ## > computes Laplace operator and integrand
    ## finite differences
    l = np.r_[0,0,np.log(kindex[2:]/kindex[1])]
    dl1 = l[1:]-l[:-1]
    dl2 = l[2:]-l[:-2]
    if(np.any(dl1[1:]==0))or(np.any(dl2==0)):
        raise ValueError(about._errors.cstring("ERROR: too finely divided harmonic grid."))
    ## operator(s)
    klim = len(kindex)
    L = np.zeros((klim,klim))
    I = np.zeros(klim)
    for jj in range(2,klim-1): ## leave out {0,1,kmax}
        L[jj,jj-1] = 2/(dl2[jj-1]*dl1[jj-1])
        L[jj,jj] = -2/dl2[jj-1]*(1/dl1[jj]+1/dl1[jj-1])
        L[jj,jj+1] = 2/(dl2[jj-1]*dl1[jj])
        I[jj] = dl2[jj-1]/2
    return L,I

def _calc_inverse(tk,var,kindex,rho,b1,Amem): ## > computes the inverse Hessian `A` and `b2`
    ## operator `T` from Eq.(B8) times 2
    if(Amem is None):
        L,I = _calc_laplace(kindex)
        #T2 = 2*np.dot(L.T,np.dot(np.diag(I/var,k=0),L,out=None),out=None) # Eq.(B8) * 2
        if(np.isscalar(var)):
            Amem = np.dot(L.T,np.dot(np.diag(I,k=0),L,out=None),out=None)
            T2 = 2/var*Amem
        else:
            Amem = np.dot(np.diag(np.sqrt(I),k=0),L,out=None)
            T2 = 2*np.dot(Amem.T,np.dot(np.diag(1/var,k=0),Amem,out=None),out=None)
    elif(np.isscalar(var)):
        T2 = 2/var*Amem
    else:
        T2 = 2*np.dot(Amem.T,np.dot(np.diag(1/var,k=0),Amem,out=None),out=None)
    b2 = b1+np.dot(T2,tk,out=None)
    ## inversion
    return np.linalg.inv(T2+np.diag(b2,k=0)),b2,Amem
Marco Selig's avatar
Marco Selig committed
293

294 295
def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None,rho=None,q=1E-42,alpha=1,perception=(1,0),smoothness=False,var=100,bare=True,**kwargs):
    """
Marco Selig's avatar
Marco Selig committed
296
        Infers the power spectrum.
Marco Selig's avatar
Marco Selig committed
297

Marco Selig's avatar
Marco Selig committed
298
        Given a map the inferred power spectrum is equal to ``m.power()``; given
299 300 301
        an uncertainty a power spectrum is inferred according to the "critical"
        filter formula, which can be extended by a smoothness prior. For
        details, see references below.
Marco Selig's avatar
Marco Selig committed
302

303 304 305
        Parameters
        ----------
        m : field
Marco Selig's avatar
Marco Selig committed
306
            Map for which the power spectrum is inferred.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        domain : space
            The space wherein the power spectrum is defined, can be retrieved
            from `Sk.domain` (default: None).
        Sk : projection_operator
            Projection operator specifying the pseudo trace for all projection
            bands, can be initialized from `domain` and `pindex`
            (default: None).
        D : operator, *optional*
            Operator expressing the uncertainty of the map `m`, its diagonal
            `D.hathat` in the `domain` suffices (default: 0).
        pindex : numpy.ndarray, *optional*
            Indexing array giving the power spectrum index for each
            represented mode (default: None).
        pundex : list, *optional*
            Unindexing list undoing power indexing.
        kindex : numpy.ndarray, *optional*
            Scale corresponding to each band in the power spectrum
            (default: None).
        rho : numpy.ndarray, *optional*
            Number of modes per scale (default: None).
        q : {scalar, list, array}, *optional*
            Spectral scale parameter of the assumed inverse-Gamme prior
            (default: 1E-42).
        alpha : {scalar, list, array}, *optional*
            Spectral shape parameter of the assumed inverse-Gamme prior
            (default: 1).
        perception : {tuple, list, array}, *optional*
Marco Selig's avatar
Marco Selig committed
334 335
            Tuple specifying the filter perception (delta,epsilon)
            (default: (1,0)).
336 337 338 339 340 341 342 343 344
        smoothness : bool, *optional*
            Indicates whether the smoothness prior is used or not
            (default: False).
        var : {scalar, list, array}, *optional*
            Variance of the assumed spectral smoothness prior (default: 100).
        bare : bool, *optional*
            Indicates whether the power spectrum entries returned are "bare"
            or not (mandatory for the correct incorporation of volume weights)
            (default: True).
Marco Selig's avatar
Marco Selig committed
345

346 347 348
        Returns
        -------
        pk : numpy.ndarray
Marco Selig's avatar
Marco Selig committed
349
            The inferred power spectrum, weighted according to the `bare` flag.
350 351 352 353

        Other Parameters
        ----------------
        random : string, *optional*
Marco Selig's avatar
Marco Selig committed
354 355
            The distribution from which the probes for the diagonal probing are
            drawn, supported distributions are (default: "pm1"):
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

            - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i})
            - "gau" (normal distribution with zero-mean and unit-variance)

        ncpu : int, *optional*
            The number of CPUs to be used for parallel probing (default: 2).
        nrun : int, *optional*
            The number of probes to be evaluated; if ``nrun < ncpu ** 2``, it
            will be set to ``ncpu ** 2`` (default: 8).
        nper : int, *optional*
            This number specifies how many probes will be evaluated by one
            worker. Afterwards a new worker will be created to evaluate a chunk
            of `nper` probes; it is recommended to stay with the default value
            (default: None).
        save : bool, *optional*
            If `save` is True, then the probing results will be written to the
            hard disk instead of being saved in the RAM; this is recommended
            for high dimensional fields whose probes would otherwise fill up
            the memory (default: False).
        path : string, *optional*
            The path, where the probing results are saved, if `save` is True
            (default: "tmp").
        prefix : string, *optional*
            A prefix for the saved probing results; the saved results will be
            named using that prefix and an 8-digit number (default: "").
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).
396 397 398 399

        Notes
        -----
        The general approach to inference of unknown power spectra is detailed
Marco Selig's avatar
Marco Selig committed
400 401 402 403 404 405
        in [#]_, where the "critical" filter formula, Eq.(37b), used here is
        derived, and the implications of a certain choise of the perception
        tuple (delta,epsilon) are discussed.
        The further incorporation of a smoothness prior as detailed in [#]_,
        where the underlying formula(s), Eq.(27), of this implementation are
        derived and discussed in terms of their applicability.
406 407 408 409 410 411 412 413 414 415 416 417

        References
        ----------
        .. [#] T.A. Ensslin and M. Frommert, "Reconstruction of signals with
            unknown spectra in information field theory with parameter
            uncertainty", Physical Review E, 2011,
            10.1103/PhysRevD.83.105014;
            `arXiv:1002.2928 <http://www.arxiv.org/abs/1002.2928>`_
        .. [#] N. Opermann et. al., "Reconstruction of Gaussian and log-normal
            fields with spectral smoothness", Physical Review E, 2013,
            10.1103/PhysRevE.87.032136;
            `arXiv:1210.6866 <http://www.arxiv.org/abs/1210.6866>`_
Marco Selig's avatar
Marco Selig committed
418

419 420
        Raises
        ------
421
        Exception, IndexError, TypeError, ValueError
422
            If some input is invalid.
Marco Selig's avatar
Marco Selig committed
423

424 425 426 427 428 429 430
    """
    ## check map
    if(not isinstance(m,field)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    ## check domain
    if(domain is None):
        if(Sk is None):
431
            raise Exception(about._errors.cstring("ERROR: insufficient input."))
432 433 434 435
        else:
            domain = Sk.domain
    elif(not isinstance(domain,space)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
436 437
    ## check implicit power indices
    if(pindex is None)or(kindex is None)or(rho is None):
438
        try:
439
            domain.set_power_indices(**kwargs)
440
        except:
441
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
442
        else:
443 444 445
            pindex = domain.power_indices.get("pindex")
            kindex = domain.power_indices.get("kindex")
            rho = domain.power_indices.get("rho")
446
            if(pundex is None):
447
                pundex = domain.power_indices.get("pundex")
448 449
            elif(not isinstance(pundex,list)):
                raise TypeError(about._errors.cstring("ERROR: invalid input."))
450 451
            elif(len(pundex)!=np.size(domain.dim(split=True))):
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(len(pundex))+" <> "+str(np.size(domain.dim(split=True)))+" )."))
452
    ## check explicit power indices
453 454
    else:
        pindex = np.array(pindex,dtype=np.int)
455 456
        if(not np.all(np.array(np.shape(pindex))==domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: shape mismatch ( "+str(np.array(np.shape(pindex)))+" <> "+str(domain.dim(split=True))+" )."))
457
        kindex = np.sort(np.real(np.array(kindex,dtype=domain.vol.dtype).flatten(order='C')),axis=0,kind="quicksort",order=None)
458 459 460 461 462 463
        rho = np.array(rho,dtype=np.int)
        if(pundex is None):
            ## quick pundex
            pundex = list(np.unravel_index(np.unique(pindex,return_index=True,return_inverse=False)[1],pindex.shape,order='C'))
        elif(not isinstance(pundex,list)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))
464 465
        elif(len(pundex)!=np.size(domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(len(pundex))+" <> "+str(np.size(domain.dim(split=True)))+" )."))
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    ## check projection operator
    if(Sk is None):
        Sk = projection_operator(domain,assign=pindex)
    elif(not isinstance(Sk,projection_operator))or(not hasattr(Sk,"pseudo_tr")):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    elif(Sk.domain<>domain):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    ## check critical parameters
    if(not np.isscalar(q)):
        q = np.array(q,dtype=domain.vol.dtype).flatten()
        if(np.size(q)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if(not np.isscalar(alpha)):
        alpha = np.array(alpha,dtype=domain.vol.dtype).flatten()
        if(np.size(alpha)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
    ## check perception (delta,epsilon)
    if(perception is None):
        perception = (1,0) ## critical perception
    elif(not isinstance(perception,(tuple,list,np.ndarray))):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    elif(len(perception)<2):
        raise IndexError(about._errors.cstring("ERROR: invalid input."))
    if(perception[1] is None):
        perception[1] = rho/2*(perception[0]-1) ## critical epsilon
    ## check smothness variance
    if(not np.isscalar(var)):
        var = np.array(var,dtype=domain.vol.dtype).flatten()
        if(np.size(var)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
Marco Selig's avatar
Marco Selig committed
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    ## trace(s) of B
    trB1 = Sk.pseudo_tr(m) ## == Sk(m).pseudo_dot(m), but faster
    if(perception[0]==0)or(D is None)or(D==0):
        trB2 = 0
    else:
        trB2 = Sk.pseudo_tr(D,**kwargs) ## probing of the partial traces of D
    ## power spectrum
    numerator = 2*q+trB1+perception[0]*trB2 ## non-bare(!)
    denominator1 = rho+2*(alpha-1+perception[1])

    if(smoothness):
        if(not domain.discrete):
            numerator = weight_power(domain,numerator,power=-1,pindex=pindex,pundex=pundex)
        pk = numerator/denominator1 ## bare(!)

        ## smoothness prior
        tk = np.log(pk)
        Amemory = None
        var_ = var*1.1 # temporally increasing the variance
        breakinfo = False
        while(var_>=var): # slowly lowering the variance
            absdelta = 1
            while(absdelta>1E-3): # solving with fixed variance
                ## solution of A delta = b1 - b2
                Ainverse,denominator2,Amemory = _calc_inverse(tk,var_,kindex,rho,denominator1,Amemory)
                delta = np.dot(Ainverse,numerator/pk-denominator2,out=None)
                if(np.abs(delta).max()>absdelta): # increasing variance when speeding up
                    var_ *= 1.1
                absdelta = np.abs(delta).max()
                tk += min(1,0.1/absdelta)*delta # adaptive step width
                pk *= np.exp(min(1,0.1/absdelta)*delta) # adaptive step width
            var_ /= 1.1 # lowering the variance when converged
            if(var_<var):
                if(breakinfo): # making sure there's one iteration with the correct variance
                    break
                var_ = var
                breakinfo = True

        ## weight if ...
        if(not domain.discrete)and(not bare):
            pk = weight_power(domain,pk,power=1,pindex=pindex,pundex=pundex) ## non-bare(!)
Marco Selig's avatar
Marco Selig committed
538

539 540 541 542 543
    else:
        pk = numerator/denominator1 ## non-bare(!)
        ## weight if ...
        if(not domain.discrete)and(not bare):
            pk = weight_power(domain,pk,power=1,pindex=pindex,pundex=pundex) ## non-bare(!)
Marco Selig's avatar
Marco Selig committed
544

545
    return pk
Marco Selig's avatar
Marco Selig committed
546

547
##=============================================================================
Marco Selig's avatar
Marco Selig committed
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
##-----------------------------------------------------------------------------

def interpolate_power(spec,mode="linear",domain=None,kindex=None,newkindex=None,**kwargs):
    """
        Interpolates a given power spectrum at new k(-indices).

        Parameters
        ----------
        spec : {scalar, array}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
        mode : string
            String specifying the interpolation scheme, supported
            schemes are (default: "linear"):

            - "linear"
            - "nearest"
            - "zero"
            - "slinear"
            - "quadratic"
            - "cubic"

        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the old power spectrum;
            can be retrieved from `domain` (default: None).
        newkindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the new power spectrum;
            can be retrieved from `domain` if `kindex` is given
            (default: None).

        Returns
        -------
        newspec : numpy.ndarray
            The interpolated power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        See Also
        --------
        scipy.interpolate.interp1d

        Raises
        ------
        Exception, IndexError, TypeError, ValueError
            If some input is invalid.
        ValueError
            If an interpolation is flawed.

    """
    ## check implicit kindex
    if(kindex is None):
        if(isinstance(domain,space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")
        else:
            raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check power spectrum
        spec = domain.enforce_power(spec,size=np.size(kindex))
        ## check explicit newkindex
        if(newkindex is None):
            raise Exception(about._errors.cstring("ERROR: insufficient input."))
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=domain.vol.dtype).flatten(order='C')),axis=0,kind="quicksort",order=None)
    ## check explicit kindex
    else:
        kindex = np.sort(np.real(np.array(kindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

        ## check power spectrum
        if(isinstance(spec,field)):
            spec = spec.val.astype(kindex.dtype)
        elif(callable(spec)):
            try:
643
                spec = np.array(spec(kindex),dtype=kindex.dtype)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            except:
                TypeError(about._errors.cstring("ERROR: invalid power spectra function.")) ## exception in ``spec(kindex)``
        elif(np.isscalar(spec)):
            spec = np.array([spec],dtype=kindex.dtype)
        else:
            spec = np.array(spec,dtype=kindex.dtype)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if(not np.all(np.isfinite(spec))):
            raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
        elif(np.any(spec<0)):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
        elif(np.any(spec==0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if(np.size(spec)==1):
            spec = spec*np.ones(size,dtype=spec.dtype,order='C')
        ## size check
        elif(np.size(spec)<size):
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(spec))+" < "+str(size)+" )."))
        elif(np.size(spec)>size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == "+str(size)+" ).")
            spec = spec[:size]

        ## check implicit newkindex
        if(newkindex is None):
            if(isinstance(domain,space)):
                try:
                    domain.set_power_indices(**kwargs)
                except:
                    raise ValueError(about._errors.cstring("ERROR: invalid input."))
                else:
                    newkindex = domain.power_indices.get("kindex")
            else:
                raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check explicit newkindex
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

    ## check bounds
    if(kindex[0]<0)or(newkindex[0]<0):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if(np.any(newkindex>kindex[-1])):
        about.warnings.cprint("WARNING: interpolation beyond upper bound.")
        ## continuation extension by point mirror
        nmirror = np.size(kindex)-np.searchsorted(kindex,2*kindex[-1]-newkindex[-1],side='left')+1
        spec = np.r_[spec,np.exp(2*np.log(spec[-1])-np.log(spec[-nmirror:-1][::-1]))]
        kindex = np.r_[kindex,(2*kindex[-1]-kindex[-nmirror:-1][::-1])]
    ## interpolation
    newspec = ip(kindex,spec,kind=mode,axis=0,copy=True,bounds_error=True,fill_value=np.NAN)(newkindex)
    ## check new power spectrum
    if(not np.all(np.isfinite(newspec))):
        raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
    elif(np.any(newspec<0)):
        raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
    elif(np.any(newspec==0)):
        about.warnings.cprint("WARNING: nonpositive value(s).")

    return newspec

##-----------------------------------------------------------------------------