field.py 29.2 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
4
5
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
6

7
from d2o import distributed_data_object,\
8
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
9

10
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
11

12
from nifty.domain_object import DomainObject
13

14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19

Jait Dixit's avatar
Jait Dixit committed
20
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
21
    # ---Initialization methods---
22

23
    def __init__(self, domain=None, val=None, dtype=None,
24
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
25

26
        self.domain = self._parse_domain(domain=domain, val=val)
27
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
28

Theo Steininger's avatar
Theo Steininger committed
29
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
30
                                       val=val,
31
                                       domain=self.domain)
32

33
34
35
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
36
37
38

        self.set_val(new_val=val, copy=copy)

39
    def _parse_domain(self, domain, val=None):
40
        if domain is None:
41
42
43
44
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
45
        elif isinstance(domain, DomainObject):
46
            domain = (domain,)
47
48
49
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
50
        for d in domain:
51
            if not isinstance(d, DomainObject):
52
53
                raise TypeError(
                    "Given domain contains something that is not a "
54
                    "DomainObject instance.")
csongor's avatar
csongor committed
55
56
        return domain

Theo Steininger's avatar
Theo Steininger committed
57
58
59
60
61
62
63
64
65
66
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
67

68
    def _infer_dtype(self, dtype, val, domain):
csongor's avatar
csongor committed
69
        if dtype is None:
70
71
72
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
73
74
75
76
77
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
csongor's avatar
csongor committed
78

Theo Steininger's avatar
Theo Steininger committed
79
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
80

Theo Steininger's avatar
Theo Steininger committed
81
        return dtype
82

83
84
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
85
            if isinstance(val, distributed_data_object):
86
                distribution_strategy = val.distribution_strategy
87
            elif isinstance(val, Field):
88
                distribution_strategy = val.distribution_strategy
89
            else:
90
                self.logger.info("Datamodel set to default!")
91
                distribution_strategy = gc['default_distribution_strategy']
92
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
93
94
95
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
96
        return distribution_strategy
97
98

    # ---Factory methods---
99

100
    @classmethod
101
    def from_random(cls, random_type, domain=None, dtype=None,
102
                    distribution_strategy=None, **kwargs):
103
        # create a initially empty field
104
        f = cls(domain=domain, dtype=dtype,
105
                distribution_strategy=distribution_strategy)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
141
        else:
142
143
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
144

145
        return random_arguments
csongor's avatar
csongor committed
146

147
148
149
150
151
152
153
154
155
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
156
                    "Field has a space in `domain` which is neither "
157
158
159
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
160
161
162
163
164
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
165
166
167
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
168
169

        if len(spaces) == 0:
170
171
            raise ValueError(
                "No space for analysis specified.")
172
        elif len(spaces) > 1:
173
174
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
175
176
177
178

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
179
180
            raise ValueError(
                "The analyzed space must be harmonic.")
181

182
183
184
185
186
187
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

188
189
190
191
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

192
193
194
195
196
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

197
198
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
199
                                  distribution_strategy=distribution_strategy,
200
201
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
202

203
        # extract pindex and rho from power_domain
204
205
        pindex = power_domain.pindex
        rho = power_domain.rho
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
224
225
226
227
228
229
230
231
232
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

233
234
235
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
264
            raise ValueError("pindex's distribution strategy must be "
265
266
267
268
269
270
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
271
                    "A slicing distributor shall not be reshaped to "
272
273
274
275
276
277
278
279
280
281
282
283
284
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

285
286
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
287
        # assert that all spaces in `self.domain` are either of signal-type or
288
289
        # power_space instances
        for sp in self.domain:
290
            if not sp.harmonic and not isinstance(sp, PowerSpace):
291
                raise AttributeError(
292
                    "Field has a space in `domain` which is neither "
293
294
                    "harmonic nor a PowerSpace.")

295
296
297
298
299
300
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
301
302
303
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
304
305

        if len(spaces) == 0:
306
307
            raise ValueError(
                "No space for synthesis specified.")
308
        elif len(spaces) > 1:
309
310
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
311
312
313
314

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
315
316
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
317
318
319
320
321
322
323
324
325
326
327
328
329
330

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

331
332
        result_list = [self.__class__.from_random(
                             'normal',
333
334
335
                             mean=mean,
                             std=std,
                             domain=result_domain,
336
337
                             dtype=harmonic_domain.dtype,
                             distribution_strategy=self.distribution_strategy)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
362
            self.logger.warn(
363
                "The distribution_stragey of pindex does not fit the "
364
365
366
367
368
369
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
370
        full_spec = self.val.get_full_data()
371
372
373
374
375

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
376
        local_rescaler = full_spec[local_blow_up]
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
398

Theo Steininger's avatar
Theo Steininger committed
399
    # ---Properties---
400

Theo Steininger's avatar
Theo Steininger committed
401
    def set_val(self, new_val=None, copy=False):
402
403
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
404
405
            new_val = new_val.copy()
        self._val = new_val
406
        return self
csongor's avatar
csongor committed
407

408
409
    def get_val(self, copy=False):
        if copy:
Theo Steininger's avatar
Theo Steininger committed
410
            return self._val.copy()
411
        else:
Theo Steininger's avatar
Theo Steininger committed
412
            return self._val
csongor's avatar
csongor committed
413

Theo Steininger's avatar
Theo Steininger committed
414
415
416
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
417

Theo Steininger's avatar
Theo Steininger committed
418
419
420
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
421

422
423
    @property
    def shape(self):
424
        shape_tuple = tuple(sp.shape for sp in self.domain)
425
426
427
428
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
429

430
        return global_shape
csongor's avatar
csongor committed
431

432
433
    @property
    def dim(self):
434
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
435
436
437
438
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
439

440
441
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
442
443
444
445
446
447
448
449
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
450
        try:
Theo Steininger's avatar
Theo Steininger committed
451
            return reduce(lambda x, y: x * y, volume_tuple)
452
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
453
            return 0
454

Theo Steininger's avatar
Theo Steininger committed
455
    # ---Special unary/binary operations---
456

csongor's avatar
csongor committed
457
458
459
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
460
461
        else:
            dtype = np.dtype(dtype)
462

463
464
        casted_x = x

465
        for ind, sp in enumerate(self.domain):
466
            casted_x = sp.pre_cast(casted_x,
467
468
469
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
470
471

        for ind, sp in enumerate(self.domain):
472
473
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
474

475
        return casted_x
csongor's avatar
csongor committed
476

Theo Steininger's avatar
Theo Steininger committed
477
    def _actual_cast(self, x, dtype=None):
478
        if isinstance(x, Field):
csongor's avatar
csongor committed
479
480
481
482
483
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

484
        return_x = distributed_data_object(
485
486
487
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
488
489
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
490

491
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
492
        copied_val = self.get_val(copy=True)
493
494
495
496
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
497
498
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
499

500
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
501
502
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
503
        else:
Theo Steininger's avatar
Theo Steininger committed
504
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
505

Theo Steininger's avatar
Theo Steininger committed
506
507
508
509
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
510

511
512
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
513

Theo Steininger's avatar
Theo Steininger committed
514
515
516
517
518
519
520
521
522
523
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
524
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
525
526
527
528
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
529
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
530
        return new_field
csongor's avatar
csongor committed
531

Theo Steininger's avatar
Theo Steininger committed
532
533
534
535
536
537
538
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
539
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
540
541
542
543
544
545
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
546
        if inplace:
csongor's avatar
csongor committed
547
548
549
550
            new_field = self
        else:
            new_field = self.copy_empty()

551
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
552

csongor's avatar
csongor committed
553
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
554
555
556
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
557

558
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
559
560
561
562
563
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
564
565

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
566
567
        return new_field

Theo Steininger's avatar
Theo Steininger committed
568
569
570
571
572
573
574
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
            except AssertionError:
575
576
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

595
    def norm(self, q=2):
csongor's avatar
csongor committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
610
        if q == 2:
611
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
612
        else:
613
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

630
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
631
        new_val = new_val.conjugate()
632
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
633
634
635

        return work_field

Theo Steininger's avatar
Theo Steininger committed
636
    # ---General unary/contraction methods---
637

Theo Steininger's avatar
Theo Steininger committed
638
639
    def __pos__(self):
        return self.copy()
640

Theo Steininger's avatar
Theo Steininger committed
641
642
643
644
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
645
646
        return return_field

Theo Steininger's avatar
Theo Steininger committed
647
648
649
650
651
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
652

653
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
654
655
656
657
658
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
659

660
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
661
662

        try:
Theo Steininger's avatar
Theo Steininger committed
663
            axes_list = reduce(lambda x, y: x+y, axes_list)
664
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
665
            axes_list = ()
csongor's avatar
csongor committed
666

Theo Steininger's avatar
Theo Steininger committed
667
668
669
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
670

Theo Steininger's avatar
Theo Steininger committed
671
672
673
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
674
        else:
Theo Steininger's avatar
Theo Steininger committed
675
676
677
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
678

Theo Steininger's avatar
Theo Steininger committed
679
680
681
682
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
683

684
685
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
686

687
688
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
689

690
691
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
692

693
694
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
695

696
697
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
698

699
700
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
701

702
703
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
704

705
706
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
707

708
709
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
710

711
712
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
713

714
715
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
716

Theo Steininger's avatar
Theo Steininger committed
717
    # ---General binary methods---
csongor's avatar
csongor committed
718

Theo Steininger's avatar
Theo Steininger committed
719
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
720
        # if other is a field, make sure that the domains match
721
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
722
723
724
725
726
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
727
728
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
729
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
730

Theo Steininger's avatar
Theo Steininger committed
731
732
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
733
734
735
736

        if inplace:
            working_field = self
        else:
737
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
738

Theo Steininger's avatar
Theo Steininger committed
739
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
740
741
742
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
743
        return self._binary_helper(other, op='__add__')
744

745
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
746
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
747
748

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
749
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
750
751

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
752
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
753
754

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
755
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
756
757

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
758
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
759
760

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
761
        return self._binary_helper(other, op='__mul__')
762

763
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
764
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
765
766

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
767
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
768
769

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
770
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
771
772

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
773
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
774
775

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
776
        return self._binary_helper(other, op='__idiv__', inplace=True)
777

csongor's avatar
csongor committed
778
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
779
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
780
781

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
782
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
783
784

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
785
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
786
787

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
788
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
789
790

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
791
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
792
793
794
795
796

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
797
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
798
799
800
801
802

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
803
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
804
805

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
806
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
807
808

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
809
810
811
812
813
814
815
816
817
818
819
820
821
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
822

Jait Dixit's avatar
Jait Dixit committed
823
824
825
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
826
827
828
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
829
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
830

Theo Steininger's avatar
Theo Steininger committed
831
        ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
832
833
834
835
836
837
838

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
839
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
840
841
842
843
844
845
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
846
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
847
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
848
849
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
850
851
852
853
854
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
        new_field._val = repository.get('val', hdf5_group)
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
855
856

        return new_field
857

Theo Steininger's avatar
Theo Steininger committed
858

859
class EmptyField(Field):
csongor's avatar
csongor committed
860
861
    def __init__(self):
        pass