log_rg_space.py 3.09 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22

23
from .. import dobj
Philipp Arras's avatar
Philipp Arras committed
24
from ..compat import *
25
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
26
from ..sugar import exp
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from .structured_domain import StructuredDomain


class LogRGSpace(StructuredDomain):

    _needed_for_hash = ['_shape', '_bindistances', '_t_0', '_harmonic']

    def __init__(self, shape, bindistances, t_0, harmonic=False):
        self._harmonic = bool(harmonic)

        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)

        self._bindistances = tuple(bindistances)
        self._t_0 = tuple(t_0)

        self._dim = int(reduce(lambda x, y: x * y, self._shape))
        self._dvol = float(reduce(lambda x, y: x * y, self._bindistances))

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

Martin Reinecke's avatar
bug fix    
Martin Reinecke committed
55
    @property
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    def scalar_dvol(self):
        return self._dvol

    @property
    def bindistances(self):
        return np.array(self._bindistances)

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def t_0(self):
        return np.array(self._t_0)

    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
72
73
        return ("LogRGSpace(shape={}, harmonic={})"
                .format(self.shape, self.harmonic))
74
75
76
77

    def get_default_codomain(self):
        codomain_bindistances = 1. / (self.bindistances * self.shape)
        return LogRGSpace(self.shape, codomain_bindistances,
Martin Reinecke's avatar
Martin Reinecke committed
78
                          self._t_0, True)
79
80

    def get_k_length_array(self):
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        if not self.harmonic:
            raise NotImplementedError
        ks = self.get_k_array()
        return Field.from_global_data(self, np.linalg.norm(ks, axis=0))

    def get_k_array(self):
        ndim = len(self.shape)
        k_array = np.zeros((ndim,) + self.shape)
        dist = self.bindistances
        for i in range(ndim):
            ks = np.zeros(self.shape[i])
            ks[1:] = np.minimum(self.shape[i] - 1 - np.arange(self.shape[i]-1), np.arange(self.shape[i]-1)) * dist[i]
            if self.harmonic:
                ks[0] = np.nan
            else:
                ks[0] = -np.inf
                ks[1:] += self.t_0[i]
            k_array[i] += ks.reshape((1,)*i + (self.shape[i],) + (1,)*(ndim-i-1))
        return k_array