smooth_linear_amplitude.py 7.05 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Philipp Arras's avatar
Docs    
Philipp Arras committed
20
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domains.power_space import PowerSpace
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
from ..operators.adder import Adder
Philipp Arras's avatar
Philipp Arras committed
24
25
26
27
from ..operators.exp_transform import ExpTransform
from ..operators.qht_operator import QHTOperator
from ..operators.slope_operator import SlopeOperator
from ..operators.symmetrizing_operator import SymmetrizingOperator
28
from ..sugar import makeOp
29
30


31
def _ceps_kernel(k, a, k0):
Philipp Arras's avatar
Philipp Arras committed
32
    return (a/(1 + np.sum((k.T/k0)**2, axis=-1).T))**2
33
34


Philipp Arras's avatar
Docs    
Philipp Arras committed
35
def CepstrumOperator(target, a, k0):
36
    """Turns a white Gaussian random field into a smooth field on a LogRGSpace.
37

Philipp Arras's avatar
Docs    
Philipp Arras committed
38
39
40
41
42
43
44
45
    Composed out of three operators:

        sym @ qht @ diag(sqrt_ceps),

    where sym is a :class:`SymmetrizingOperator`, qht is a :class:`QHTOperator`
    and ceps is the so-called cepstrum:

    .. math::
Martin Reinecke's avatar
Martin Reinecke committed
46
        \\mathrm{sqrt\\_ceps}(k) = \\frac{a}{1+(k/k0)^2}
Philipp Arras's avatar
Docs    
Philipp Arras committed
47
48
49
50
51
52
53

    These operators are combined in this fashion in order to generate:

    - A field which is smooth, i.e. second derivatives are punished (note
      that the sqrt-cepstrum is essentially proportional to 1/k**2).

    - A field which is symmetric around the pixel in the middle of the space.
Philipp Arras's avatar
Docs    
Philipp Arras committed
54
55
      This is result of the :class:`SymmetrizingOperator` and needed in order
      to decouple the degrees of freedom at the beginning and the end of the
Philipp Arras's avatar
Docs    
Philipp Arras committed
56
57
58
      amplitude whenever :class:`CepstrumOperator` is used as in
      :class:`SLAmplitude`.

Philipp Arras's avatar
Docs    
Philipp Arras committed
59
60
    The prior on the zero mode (or zero subspaces for more than one dimensions)
    is the integral of the prior over all other modes along the corresponding
61
    axis.
Philipp Arras's avatar
Docs    
Philipp Arras committed
62
63
64
65

    Parameters
    ----------
    target : LogRGSpace
66
        Target domain of the operator, needs to be non-harmonic.
Philipp Arras's avatar
Docs    
Philipp Arras committed
67
    a : float
68
69
70
71
        Cutoff of smoothness prior (positive only). Controls the
        regularization of the inverse laplace operator to be finite at zero.
        Larger values for the cutoff results in a weaker constraining prior.
    k0 : float, list of float
72
        Strength of smoothness prior in quefrency space (positive only) along
73
74
        each axis. If float then the strength is the same along each axis.
        Larger values result in a weaker constraining prior.
75
    """
76
    a = float(a)
Philipp Arras's avatar
Docs    
Philipp Arras committed
77
    target = DomainTuple.make(target)
78
    if a <= 0:
Philipp Arras's avatar
Docs    
Philipp Arras committed
79
        raise ValueError
80
    if len(target) > 1 or target[0].harmonic:
Philipp Arras's avatar
Docs    
Philipp Arras committed
81
        raise TypeError
Philipp Arras's avatar
Docs    
Philipp Arras committed
82
83
84
85
86
    if isinstance(k0, (float, int)):
        k0 = np.array([k0]*len(target.shape))
    else:
        k0 = np.array(k0)
    if len(k0) != len(target.shape):
87
88
89
        raise ValueError
    if np.any(np.array(k0) <= 0):
        raise ValueError
Philipp Arras's avatar
Docs    
Philipp Arras committed
90
91
92
93
94
95
96
97
98

    qht = QHTOperator(target)
    dom = qht.domain[0]
    sym = SymmetrizingOperator(target)

    # Compute cepstrum field
    dim = len(dom.shape)
    shape = dom.shape
    q_array = dom.get_k_array()
99
    # Fill all non-zero modes
Philipp Arras's avatar
Philipp Arras committed
100
101
    no_zero_modes = (slice(1, None),)*dim
    ks = q_array[(slice(None),) + no_zero_modes]
102
    cepstrum_field = np.zeros(shape)
Philipp Arras's avatar
Docs    
Philipp Arras committed
103
    cepstrum_field[no_zero_modes] = _ceps_kernel(ks, a, k0)
104
    # Fill zero-mode subspaces
105
    for i in range(dim):
Philipp Arras's avatar
Philipp Arras committed
106
107
108
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
109
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)
Philipp Arras's avatar
Docs    
Philipp Arras committed
110
    cepstrum = Field.from_global_data(dom, cepstrum_field)
Philipp Arras's avatar
Philipp Arras committed
111

112
113
114
    return sym @ qht @ makeOp(cepstrum.sqrt())


115
def SLAmplitude(*, target, n_pix, a, k0, sm, sv, im, iv, keys=['tau', 'phi']):
116
117
    '''Operator for parametrizing smooth amplitudes (square roots of power
    spectra).
118
119
120

    The general guideline for setting up generative models in IFT is to
    transform the problem into the eigenbase of the prior and formulate the
121
122
    generative model in this base. This is done here for the case of an
    amplitude which is smooth and has a linear component (both on
123
124
125
    double-logarithmic scale).

    This function assembles an :class:`Operator` which maps two a-priori white
126
    Gaussian random fields to a smooth amplitude which is composed out of
127
128
129
130
131
132
    a linear and a smooth component.

    On double-logarithmic scale, i.e. both x and y-axis on logarithmic scale,
    the output of the generated operator is:

        AmplitudeOperator = 0.5*(smooth_component + linear_component)
Philipp Arras's avatar
Philipp Arras committed
133

134
    This is then exponentiated and exponentially binned (in this order).
135
136
137
138
139
140
141

    The prior on the linear component is parametrized by four real numbers,
    being expected value and prior variance on the slope and the y-intercept
    of the linear function.

    The prior on the smooth component is parametrized by two real numbers: the
    strength and the cutoff of the smoothness prior (see :class:`CepstrumOperator`).
Martin Reinecke's avatar
Martin Reinecke committed
142
143
144

    Parameters
    ----------
145
146
147
148
149
150
151
    n_pix : int
        Number of pixels of the space in which the .
    target : PowerSpace
        Target of the Operator.
    a : float
        Strength of smoothness prior (see :class:`CepstrumOperator`).
    k0 : float
Philipp Arras's avatar
Docs    
Philipp Arras committed
152
153
        Cutoff of smothness prior in quefrency space (see
        :class:`CepstrumOperator`).
Philipp Arras's avatar
Philipp Arras committed
154
    sm : float
Philipp Arras's avatar
Docs    
Philipp Arras committed
155
        Expected exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
156
    sv : float
157
        Prior standard deviation of exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
158
    im : float
Philipp Arras's avatar
Docs    
Philipp Arras committed
159
160
        Expected y-intercept of power law. This is the value at t_0 of the
        LogRGSpace (see :class:`ExpTransform`).
Philipp Arras's avatar
Philipp Arras committed
161
    iv : float
162
        Prior standard deviation of y-intercept of power law.
163
164
165
166
167
168
169

    Returns
    -------
    Operator
        Operator which is defined on the space of white excitations fields and
        which returns on its target a power spectrum which consists out of a
        smooth and a linear part.
Martin Reinecke's avatar
Martin Reinecke committed
170
    '''
171
172
173
174
175
    if not (isinstance(n_pix, int) and isinstance(target, PowerSpace)):
        raise TypeError

    a, k0 = float(a), float(k0)
    sm, sv, im, iv = float(sm), float(sv), float(im), float(iv)
176
177
    if sv <= 0 or iv <= 0:
        raise ValueError
178
179
180
181

    et = ExpTransform(target, n_pix)
    dom = et.domain[0]

182
    # Smooth component
183
184
    dct = {'a': a, 'k0': k0}
    smooth = CepstrumOperator(dom, **dct).ducktape(keys[0])
Martin Reinecke's avatar
Martin Reinecke committed
185

186
    # Linear component
187
188
189
190
191
    sl = SlopeOperator(dom)
    mean = np.array([sm, im + sm*dom.t_0[0]])
    sig = np.array([sv, iv])
    mean = Field.from_global_data(sl.domain, mean)
    sig = Field.from_global_data(sl.domain, sig)
Philipp Arras's avatar
Philipp Arras committed
192
    linear = sl @ Adder(mean) @ makeOp(sig).ducktape(keys[1])
193
194
195

    # Combine linear and smooth component
    loglog_ampl = 0.5*(smooth + linear)
Philipp Arras's avatar
Changes    
Philipp Arras committed
196

197
    # Go from loglog-space to linear-linear-space
Philipp Arras's avatar
Philipp Arras committed
198
    return et @ loglog_ampl.exp()