smooth_linear_amplitude.py 5.28 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
Martin Reinecke committed
20
from ..domains.power_space import PowerSpace
21
from ..domains.unstructured_domain import UnstructuredDomain
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23 24 25 26 27
from ..operators.exp_transform import ExpTransform
from ..operators.offset_operator import OffsetOperator
from ..operators.qht_operator import QHTOperator
from ..operators.slope_operator import SlopeOperator
from ..operators.symmetrizing_operator import SymmetrizingOperator
28
from ..sugar import makeOp
29 30 31


def _ceps_kernel(dof_space, k, a, k0):
32
    return a**2/(1 + (k/k0)**2)**2
33 34


35
def _create_cepstrum_amplitude_field(domain, cepstrum):
36 37
    dim = len(domain.shape)
    shape = domain.shape
38
    q_array = domain.get_k_array()
39

40
    # Fill all non-zero modes
Philipp Arras's avatar
Philipp Arras committed
41 42
    no_zero_modes = (slice(1, None),)*dim
    ks = q_array[(slice(None),) + no_zero_modes]
43 44 45
    cepstrum_field = np.zeros(shape)
    cepstrum_field[no_zero_modes] = cepstrum(ks)

46
    # Fill zero-mode subspaces
47
    for i in range(dim):
Philipp Arras's avatar
Philipp Arras committed
48 49 50
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
51
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)
52
    return Field.from_global_data(domain, cepstrum_field)
Martin Reinecke's avatar
Martin Reinecke committed
53

Martin Reinecke's avatar
Martin Reinecke committed
54

55
def CepstrumOperator(domain, a, k0):
56
    '''
57 58
    .. math::
        C(k) = \\left(\\frac{a}{1+(k/k0)^2}\\right)^2
59
    '''
Philipp Arras's avatar
Philipp Arras committed
60 61 62
    if a <= 0 or k0 <= 0:
        raise ValueError

63
    qht = QHTOperator(target=domain)
Philipp Arras's avatar
Philipp Arras committed
64
    dof_space = qht.domain[0]
65 66 67 68 69 70
    sym = SymmetrizingOperator(domain)
    kern = lambda k: _ceps_kernel(dof_space, k, a, k0)
    cepstrum = _create_cepstrum_amplitude_field(dof_space, kern)
    return sym @ qht @ makeOp(cepstrum.sqrt())


71 72 73
def SLAmplitude(target, n_pix, a, k0, sm, sv, im, iv, keys=['tau', 'phi']):
    '''Operator for parametrizing smooth amplitudes (square roots of power
    spectra).
74 75 76

    The general guideline for setting up generative models in IFT is to
    transform the problem into the eigenbase of the prior and formulate the
77 78
    generative model in this base. This is done here for the case of an
    amplitude which is smooth and has a linear component (both on
79 80 81
    double-logarithmic scale).

    This function assembles an :class:`Operator` which maps two a-priori white
82
    Gaussian random fields to a smooth amplitude which is composed out of
83 84 85 86 87 88
    a linear and a smooth component.

    On double-logarithmic scale, i.e. both x and y-axis on logarithmic scale,
    the output of the generated operator is:

        AmplitudeOperator = 0.5*(smooth_component + linear_component)
Philipp Arras's avatar
Philipp Arras committed
89

90
    This is then exponentiated and exponentially binned (in this order).
91 92 93 94 95 96 97

    The prior on the linear component is parametrized by four real numbers,
    being expected value and prior variance on the slope and the y-intercept
    of the linear function.

    The prior on the smooth component is parametrized by two real numbers: the
    strength and the cutoff of the smoothness prior (see :class:`CepstrumOperator`).
Martin Reinecke's avatar
Martin Reinecke committed
98 99 100

    Parameters
    ----------
101 102 103 104 105 106 107 108
    n_pix : int
        Number of pixels of the space in which the .
    target : PowerSpace
        Target of the Operator.
    a : float
        Strength of smoothness prior (see :class:`CepstrumOperator`).
    k0 : float
        Cutoff of smothness prior in quefrency space (see :class:`CepstrumOperator`).
Philipp Arras's avatar
Philipp Arras committed
109
    sm : float
110
        Expected exponent of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
111
    sv : float
112
        Prior standard deviation of exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
113
    im : float
114
        Expected y-intercept of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
115
    iv : float
116
        Prior standard deviation of y-intercept of power law.
117 118 119 120 121 122 123

    Returns
    -------
    Operator
        Operator which is defined on the space of white excitations fields and
        which returns on its target a power spectrum which consists out of a
        smooth and a linear part.
Martin Reinecke's avatar
Martin Reinecke committed
124
    '''
125 126 127 128 129
    if not (isinstance(n_pix, int) and isinstance(target, PowerSpace)):
        raise TypeError

    a, k0 = float(a), float(k0)
    sm, sv, im, iv = float(sm), float(sv), float(im), float(iv)
130 131
    if sv <= 0 or iv <= 0:
        raise ValueError
132 133 134 135

    et = ExpTransform(target, n_pix)
    dom = et.domain[0]

136
    # Smooth component
137 138
    dct = {'a': a, 'k0': k0}
    smooth = CepstrumOperator(dom, **dct).ducktape(keys[0])
Martin Reinecke's avatar
Martin Reinecke committed
139

140
    # Linear component
141 142 143 144 145 146
    sl = SlopeOperator(dom)
    mean = np.array([sm, im + sm*dom.t_0[0]])
    sig = np.array([sv, iv])
    mean = Field.from_global_data(sl.domain, mean)
    sig = Field.from_global_data(sl.domain, sig)
    linear = (sl @ OffsetOperator(mean) @ makeOp(sig)).ducktape(keys[1])
147 148 149

    # Combine linear and smooth component
    loglog_ampl = 0.5*(smooth + linear)
Philipp Arras's avatar
Changes  
Philipp Arras committed
150

151
    # Go from loglog-space to linear-linear-space
Philipp Arras's avatar
Philipp Arras committed
152
    return et @ loglog_ampl.exp()