Planned maintenance on Wednesday, 2021-01-20, 17:00-18:00. Expect some interruptions during that time

log_rg_space.py 3.48 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from functools import reduce
Philipp Arras's avatar
Philipp Arras committed
19

20
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
21

22 23 24 25 26
from ..field import Field
from .structured_domain import StructuredDomain


class LogRGSpace(StructuredDomain):
27
    """Represents a logarithmic Cartesian grid.
28 29 30 31 32 33 34 35 36 37 38 39

    Parameters
    ----------
    shape : int or tuple of int
        Number of grid points or numbers of gridpoints along each axis.
    bindistances : float or tuple of float
        Distance between two grid points along each axis. These are
        measured on logarithmic scale and are constant therfore.
    t_0 : float or tuple of float
        FIXME
    harmonic : bool, optional
        Whether the space represents a grid in position or harmonic space.
Philipp Arras's avatar
Philipp Arras committed
40
        Default: False.
41
    """
42 43 44 45 46 47 48 49 50 51 52 53
    _needed_for_hash = ['_shape', '_bindistances', '_t_0', '_harmonic']

    def __init__(self, shape, bindistances, t_0, harmonic=False):
        self._harmonic = bool(harmonic)

        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)

        self._bindistances = tuple(bindistances)
        self._t_0 = tuple(t_0)

54 55
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
        self._dvol = float(reduce(lambda x, y: x*y, self._bindistances))
56 57 58 59 60 61 62 63 64

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

Martin Reinecke's avatar
bug fix  
Martin Reinecke committed
65
    @property
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def scalar_dvol(self):
        return self._dvol

    @property
    def bindistances(self):
        return np.array(self._bindistances)

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def t_0(self):
        return np.array(self._t_0)

    def __repr__(self):
82 83
        return ("LogRGSpace(shape={}, harmonic={})".format(
            self.shape, self.harmonic))
84 85

    def get_default_codomain(self):
86 87
        codomain_bindistances = 1./(self.bindistances*self.shape)
        return LogRGSpace(self.shape, codomain_bindistances, self._t_0, True)
88 89

    def get_k_length_array(self):
90 91 92 93 94 95 96 97 98 99 100
        if not self.harmonic:
            raise NotImplementedError
        ks = self.get_k_array()
        return Field.from_global_data(self, np.linalg.norm(ks, axis=0))

    def get_k_array(self):
        ndim = len(self.shape)
        k_array = np.zeros((ndim,) + self.shape)
        dist = self.bindistances
        for i in range(ndim):
            ks = np.zeros(self.shape[i])
Martin Reinecke's avatar
Martin Reinecke committed
101 102
            ks[1:] = np.minimum(self.shape[i] - 1 - np.arange(self.shape[i]-1),
                                np.arange(self.shape[i]-1)) * dist[i]
103 104 105 106 107
            if self.harmonic:
                ks[0] = np.nan
            else:
                ks[0] = -np.inf
                ks[1:] += self.t_0[i]
Martin Reinecke's avatar
Martin Reinecke committed
108 109
            k_array[i] += ks.reshape((1,)*i + (self.shape[i],)
                                     + (1,)*(ndim-i-1))
110
        return k_array