plot.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
20
from __future__ import division
import numpy as np
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
21
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace, dobj
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
25
26
27
28
29
30
31
32
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
33

Martin Reinecke's avatar
Martin Reinecke committed
34
35
36
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
37
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
52

Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
56
57
58
59
60
61
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
62

Martin Reinecke's avatar
Martin Reinecke committed
63
def _makeplot(name):
64
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
65
    if dobj.rank != 0:
66
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
67
        return
Martin Reinecke's avatar
Martin Reinecke committed
68
69
    if name is None:
        plt.show()
70
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
71
72
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
73
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
74
75
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
76
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
77
78
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
79
80
81
82
83
84
85
86
87
88
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
92

Martin Reinecke's avatar
Martin Reinecke committed
93
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
94
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
95
    x1, x2, y1, y2 = plt.axis()
Martin Reinecke's avatar
Martin Reinecke committed
96
97
98
99
    x1 = _get_kw("xmin", x1, **kwargs)
    x2 = _get_kw("xmax", x2, **kwargs)
    y1 = _get_kw("ymin", y1, **kwargs)
    y2 = _get_kw("xmax", y2, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
100
101
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
102

Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
106
107
108
109
110
111
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
158
159
160

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
161
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
162
163
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
164
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
165

Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167
def _get_kw(kwname, kwdefault=None, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
168
169
170
    if kwargs.get(kwname) is not None:
        return kwargs.get(kwname)
    return kwdefault
Martin Reinecke's avatar
Martin Reinecke committed
171
172


Martin Reinecke's avatar
Martin Reinecke committed
173
def plot(f, **kwargs):
174
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
175
    _register_cmaps()
176
177
178
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
179
        raise TypeError("incorrect data type")
180
181
182
183
184
185
186
187
188
189
190
191
192
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape)==1)):
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
193

194
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
195
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
196
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
197

Martin Reinecke's avatar
Martin Reinecke committed
198
199
    xsize = _get_kw("xsize", 6, **kwargs)
    ysize = _get_kw("ysize", 6, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
200
    fig.set_size_inches(xsize, ysize)
Martin Reinecke's avatar
Martin Reinecke committed
201
202
203
204
    ax.set_title(_get_kw("title", "", **kwargs))
    ax.set_xlabel(_get_kw("xlabel", "", **kwargs))
    ax.set_ylabel(_get_kw("ylabel", "", **kwargs))
    cmap = _get_kw("colormap", plt.rcParams['image.cmap'], **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
205
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
206
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
207
208
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
209
            xcoord = np.arange(npoints, dtype=np.float64)*dist
210
211
212
            for fld in f:
                ycoord = dobj.to_global_data(fld.val)
                plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
213
214
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
215
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
216
        elif len(dom.shape) == 2:
217
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
222
223
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
Martin Reinecke committed
224
225
            im = ax.imshow(dobj.to_global_data(f.val),
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
226
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
227
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
228
229
230
231
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
232
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
233
234
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
235
236
237
238
239
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
240
241
242
243
        xcoord = dom.k_lengths
        for fld in f:
            ycoord = dobj.to_global_data(fld.val)
            plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
244
245
        _limit_xy(**kwargs)
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
246
247
        return
    elif isinstance(dom, HPSpace):
248
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
249
250
251
252
253
254
255
256
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.val.size//12)), "RING")
Martin Reinecke's avatar
Martin Reinecke committed
257
        res[mask] = dobj.to_global_data(f.val)[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
258
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
259
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
260
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
261
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
262
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
263
264
        return
    elif isinstance(dom, GLSpace):
265
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
266
267
268
269
270
271
272
273
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
Martin Reinecke committed
274
        res[mask] = dobj.to_global_data(f.val)[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
275
276

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
277
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
278
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
279
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
280
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
281
282
283
        return

    raise ValueError("Field type not(yet) supported")