energy_operators.py 7.34 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
19
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
20
21
from ..field import Field
from ..linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
22
from ..sugar import makeOp, makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
23
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
24
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
25
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
26
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29


class EnergyOperator(Operator):
Torsten Ensslin's avatar
Torsten Ensslin committed
30
    """ Basis class EnergyOperator.
31
32
33
34
35
36
37
38
39
40
41
42

    The  NIFTy EnergyOperator class derives from the Operator class.

    An EnergyOperators transforms a field into a scalar, the information energy
    of the field. Typically, an EnergyOperators is an information Hamiltonian
    ( = negative log probability) or a Gibbs free energy ( = averaged 
    Hamiltonian), aka Kullbach-Leibler divergence. 
    
    An EnergyOperator can also provide its gradient as an EndomorphicOperator 
    that converts a field into a field, the gradient of the Hamiltonian at the 
    field location. 
    """
Martin Reinecke's avatar
Martin Reinecke committed
43
44
45
46
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
47
48
49
50
51
52
53
    """ NIFTy class for a squared norm energy.

    The  NIFTy SquaredNormOperator class derives from the EnergyOperator class.

    A SquaredNormOperator represents a field energy E that is the L2 norm of a 
    field f: E = f^dagger f
    """   
Martin Reinecke's avatar
Martin Reinecke committed
54
55
56
57
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
58
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
59
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
60
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
61
            jac = VdotOperator(2*x.val)(x.jac)
62
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
63
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
64
65
66


class QuadraticFormOperator(EnergyOperator):
67
68
69
70
71
72
73
    """ NIFTy class for quadratic field energies.

    The  NIFTy QuadraticFormOperator derives from the EnergyOperator class.

    It represents a field energy E that is a quadratic form of a field f with 
    kernel op: E = f^dagger op f /2 
    """      
Martin Reinecke's avatar
Martin Reinecke committed
74
75
76
77
78
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
79
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
80
81

    def apply(self, x):
82
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
83
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
84
85
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
86
            val = Field.scalar(0.5*x.val.vdot(t1))
87
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
88
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
106
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
110
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
111
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
112
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
113
        else:
Philipp Arras's avatar
Philipp Arras committed
114
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117
                raise ValueError("domain mismatch")

    def apply(self, x):
118
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
119
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
120
        res = self._op(residual).real
121
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
125
126
127
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
128
129
130
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
131
132

    def apply(self, x):
133
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
134
135
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
136
            return Field.scalar(res)
137
138
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
139
140
141
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

142

143
class InverseGammaLikelihood(EnergyOperator):
144
145
146
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
147
148

    def apply(self, x):
149
        self._check_input(x)
Philipp Frank's avatar
Philipp Frank committed
150
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
151
152
        if not isinstance(x, Linearization):
            return Field.scalar(res)
153
154
        if not x.want_metric:
            return res
155
156
157
158
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
159
class BernoulliEnergy(EnergyOperator):
160
    def __init__(self, d):
Martin Reinecke's avatar
Martin Reinecke committed
161
        self._d = d
162
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
163
164

    def apply(self, x):
165
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
166
167
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
168
            return Field.scalar(v)
169
170
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
171
172
173
174
175
176
177
178
179
180
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
181
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
182
183

    def apply(self, x):
184
        self._check_input(x)
185
186
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
187
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
188
        else:
189
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
190
191
192
193
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)

Philipp Arras's avatar
Philipp Arras committed
194
195
196
197
198
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
        subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys())
        return 'Hamiltonian:\n' + utilities.indent(subs)

Martin Reinecke's avatar
Martin Reinecke committed
199
200
201
202
203
204
205
206
207

class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
208
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
209
210
211
        self._res_samples = tuple(res_samples)

    def apply(self, x):
212
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
213
214
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))