field.py 31 KB
Newer Older
csongor's avatar
csongor committed
1 2 3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7 8 9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17 18
from nifty.random import Random

csongor's avatar
csongor committed
19 20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22 23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27 28
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
                 datamodel=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35 36 37 38 39 40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44 45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

theos's avatar
theos committed
47 48
        self.datamodel = self._parse_datamodel(datamodel=datamodel,
                                               val=val)
csongor's avatar
csongor committed
49 50 51

        self.set_val(new_val=val, copy=copy)

52
    def _parse_domain(self, domain, val=None):
53
        if domain is None:
54 55 56 57
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
58
        elif isinstance(domain, Space):
59
            domain = (domain,)
60 61 62
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
63
        for d in domain:
64
            if not isinstance(d, Space):
csongor's avatar
csongor committed
65
                raise TypeError(about._errors.cstring(
66 67
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
68 69
        return domain

70
    def _parse_field_type(self, field_type, val=None):
71
        if field_type is None:
72 73 74 75
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
76
        elif isinstance(field_type, FieldType):
77
            field_type = (field_type,)
78 79
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
80
        for ft in field_type:
81
            if not isinstance(ft, FieldType):
82
                raise TypeError(about._errors.cstring(
83
                    "ERROR: Given object is not a nifty.FieldType."))
84 85
        return field_type

theos's avatar
theos committed
86 87 88 89 90 91 92 93 94 95
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
96

97
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
98
        if dtype is None:
99 100 101
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
102 103 104 105 106 107 108
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
109

theos's avatar
theos committed
110
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
111

theos's avatar
theos committed
112
        return dtype
113

theos's avatar
theos committed
114
    def _parse_datamodel(self, datamodel, val):
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        if datamodel is None:
            if isinstance(val, distributed_data_object):
                datamodel = val.distribution_strategy
            elif isinstance(val, Field):
                datamodel = val.datamodel
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
                datamodel = gc['default_datamodel']
        elif datamodel not in DISTRIBUTION_STRATEGIES['all']:
            raise ValueError(about._errors.cstring(
                    "ERROR: Invalid datamodel!"))
        return datamodel

    # ---Factory methods---
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
                    datamodel=None, **kwargs):
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
                datamodel=datamodel)

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
174
        else:
175 176
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
177

178
        return random_arguments
csongor's avatar
csongor committed
179

180 181 182 183 184 185 186 187 188 189 190 191 192
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

215 216 217 218 219 220
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

221 222 223 224
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

225 226 227 228 229
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

230 231 232
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
                                  datamodel=distribution_strategy,
233 234
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
235

236
        # extract pindex and rho from power_domain
237 238
        pindex = power_domain.pindex
        rho = power_domain.rho
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

316
    def power_synthesize(self, spaces=None, real_signal=True):
317
        # assert that all spaces in `self.domain` are either of signal-type or
318 319
        # power_space instances
        for sp in self.domain:
320
            if not sp.harmonic and not isinstance(sp, PowerSpace):
321 322 323 324
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for synthesis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
            raise ValueError(about._errors.cstring(
                "ERROR: A PowerSpace is needed for field synthetization."))

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

        result_list = [self.__class__.from_random('normal',
                                                  result_domain,
                                                  dtype=harmonic_domain.dtype,
                                                  field_type=self.field_type,
                                                  datamodel=self.datamodel)
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
            about.warnings.cprint(
                "WARNING: The distribution_stragey of pindex does not fit the "
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
426

theos's avatar
theos committed
427
    # ---Properties---
428

theos's avatar
theos committed
429
    def set_val(self, new_val=None, copy=False):
430 431
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
432 433 434
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
435

436 437
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
438
            return self._val.copy()
439
        else:
theos's avatar
theos committed
440
            return self._val
csongor's avatar
csongor committed
441

theos's avatar
theos committed
442 443 444
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
445

theos's avatar
theos committed
446 447 448
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
449

450 451
    @property
    def shape(self):
452 453 454 455 456 457 458
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
459

460
        return global_shape
csongor's avatar
csongor committed
461

462 463
    @property
    def dim(self):
theos's avatar
theos committed
464 465 466 467 468 469 470
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
471

472 473
    @property
    def dof(self):
theos's avatar
theos committed
474 475 476 477 478 479 480 481
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
482
        try:
theos's avatar
theos committed
483
            return reduce(lambda x, y: x * y, volume_tuple)
484
        except TypeError:
theos's avatar
theos committed
485
            return 0
486

theos's avatar
theos committed
487
    # ---Special unary/binary operations---
488

csongor's avatar
csongor committed
489 490 491
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
492 493
        else:
            dtype = np.dtype(dtype)
494

theos's avatar
theos committed
495
        casted_x = self._actual_cast(x, dtype=dtype)
496 497

        for ind, sp in enumerate(self.domain):
498
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
499
                                          axes=self.domain_axes[ind])
500 501 502

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
503
                                          axes=self.field_type_axes[ind])
504 505

        return casted_x
csongor's avatar
csongor committed
506

theos's avatar
theos committed
507
    def _actual_cast(self, x, dtype=None):
508
        if isinstance(x, Field):
csongor's avatar
csongor committed
509 510 511 512 513
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

514 515 516 517
        return_x = distributed_data_object(
                                        global_shape=self.shape,
                                        dtype=dtype,
                                        distribution_strategy=self.datamodel)
518 519
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
520 521 522 523 524 525 526 527 528 529

    def copy(self, domain=None, dtype=None, field_type=None,
             datamodel=None):
        copied_val = self.get_val(copy=True)
        new_field = self.copy_empty(domain=domain,
                                    dtype=dtype,
                                    field_type=field_type,
                                    datamodel=datamodel)
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
530

theos's avatar
theos committed
531 532 533 534
    def copy_empty(self, domain=None, dtype=None, field_type=None,
                   datamodel=None):
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
535
        else:
theos's avatar
theos committed
536
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
537

theos's avatar
theos committed
538 539 540 541
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
542

theos's avatar
theos committed
543 544 545 546
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
547

theos's avatar
theos committed
548 549
        if datamodel is None:
            datamodel = self.datamodel
csongor's avatar
csongor committed
550

theos's avatar
theos committed
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
                datamodel == self.datamodel):
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
                              datamodel=datamodel)
        return new_field
csongor's avatar
csongor committed
573

theos's avatar
theos committed
574 575 576 577 578 579 580 581 582 583 584 585 586 587
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
588
        if inplace:
csongor's avatar
csongor committed
589 590 591 592
            new_field = self
        else:
            new_field = self.copy_empty()

593
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
594

csongor's avatar
csongor committed
595
        if spaces is None:
theos's avatar
theos committed
596 597 598
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
599

600
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
601 602 603 604 605
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
606 607

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
608 609
        return new_field

theos's avatar
theos committed
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

639
    def norm(self, q=2):
csongor's avatar
csongor committed
640 641 642 643 644 645 646 647 648 649 650 651 652 653
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
654
        if q == 2:
655
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
656
        else:
657
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

674
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
675
        new_val = new_val.conjugate()
676
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
677 678 679

        return work_field

theos's avatar
theos committed
680
    # ---General unary/contraction methods---
681

theos's avatar
theos committed
682 683
    def __pos__(self):
        return self.copy()
684

theos's avatar
theos committed
685 686 687 688
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
689 690
        return return_field

theos's avatar
theos committed
691 692 693 694 695
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
696

theos's avatar
theos committed
697 698 699 700 701 702
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
703

theos's avatar
theos committed
704 705 706 707
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
708

theos's avatar
theos committed
709 710 711 712
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
713
        try:
theos's avatar
theos committed
714
            axes_list = reduce(lambda x, y: x+y, axes_list)
715
        except TypeError:
theos's avatar
theos committed
716
            axes_list = ()
csongor's avatar
csongor committed
717

theos's avatar
theos committed
718 719 720
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
721

theos's avatar
theos committed
722 723 724
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
725
        else:
theos's avatar
theos committed
726 727 728 729 730 731 732 733 734 735 736
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
737

theos's avatar
theos committed
738 739
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
740

theos's avatar
theos committed
741 742
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
743

theos's avatar
theos committed
744 745
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
746

theos's avatar
theos committed
747 748
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750 751
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753 754
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756 757
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759 760
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762 763
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765 766
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768 769
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771
    # ---General binary methods---
csongor's avatar
csongor committed
772

theos's avatar
theos committed
773
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
774
        # if other is a field, make sure that the domains match
775
        if isinstance(other, Field):
theos's avatar
theos committed
776 777 778 779
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
780
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
781 782 783 784 785 786
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
787

theos's avatar
theos committed
788 789
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
790 791 792 793 794 795

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
796
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
797 798 799
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
800
        return self._binary_helper(other, op='__add__')
801

802
    def __radd__(self, other):
theos's avatar
theos committed
803
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
804 805

    def __iadd__(self, other):
theos's avatar
theos committed
806
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
807 808

    def __sub__(self, other):
theos's avatar
theos committed
809
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
810 811

    def __rsub__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
813 814

    def __isub__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
816 817

    def __mul__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__mul__')
819

820
    def __rmul__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
822 823

    def __imul__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
825 826

    def __div__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
828 829

    def __rdiv__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
831 832

    def __idiv__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__idiv__', inplace=True)
834

csongor's avatar
csongor committed
835
    def __pow__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
837 838

    def __rpow__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
840 841

    def __ipow__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
843 844

    def __lt__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
846 847

    def __le__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
849 850 851 852 853

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
854
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
855 856 857 858 859

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
860
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
861 862

    def __ge__(self, other):
theos's avatar
theos committed
863
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
864 865

    def __gt__(self, other):
theos's avatar
theos committed
866 867 868 869 870 871 872 873 874 875 876 877 878
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
879

880

881
class EmptyField(Field):
csongor's avatar
csongor committed
882 883
    def __init__(self):
        pass