amplitude_model.py 4.89 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22
23

from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
24
from ..domains.power_space import PowerSpace
25
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
26
from ..multi_domain import MultiDomain
Martin Reinecke's avatar
Martin Reinecke committed
27
from ..operators.operator import Operator
Philipp Arras's avatar
Philipp Arras committed
28
from ..sugar import makeOp, sqrt
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


def _ceps_kernel(dof_space, k, a, k0):
    return a**2/(1+(k/(k0*dof_space.bindistances[0]))**2)**2


def create_cepstrum_amplitude_field(domain, cepstrum):
    """Creates a ...
    Writes the sum of all modes into the zero-mode.

    Parameters
    ----------
    domain: ???
        ???
    cepstrum: Callable
        ???
    """

    dim = len(domain.shape)
    dist = domain.bindistances
    shape = domain.shape

    # Prepare q_array
    q_array = np.zeros((dim,) + shape)
    if dim == 1:
54
        ks = domain.get_k_length_array().to_global_data()
55
56
57
58
59
        q_array = np.array([ks])
    else:
        for i in range(dim):
            ks = np.minimum(shape[i] - np.arange(shape[i]) +
                            1, np.arange(shape[i])) * dist[i]
Martin Reinecke's avatar
Martin Reinecke committed
60
            q_array[i] += ks.reshape((1,)*i + (shape[i],) + (1,)*(dim-i-1))
61
62
63
64
65
66
67
68
69
70

    # Fill cepstrum field (all non-zero modes)
    no_zero_modes = (slice(1, None),) * dim
    ks = q_array[(slice(None),) + no_zero_modes]
    cepstrum_field = np.zeros(shape)
    cepstrum_field[no_zero_modes] = cepstrum(ks)

    # Fill cepstrum field (zero-mode subspaces)
    for i in range(dim):
        # Prepare indices
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
74
75
76
77

        # Do summation
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)

78
    return Field.from_global_data(domain, cepstrum_field)
Martin Reinecke's avatar
Martin Reinecke committed
79

Martin Reinecke's avatar
Martin Reinecke committed
80

Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
class AmplitudeModel(Operator):
    '''
    Computes a smooth power spectrum.
    Output lives in PowerSpace.

    Parameters
    ----------

    Npixdof : #pix in dof_space

    ceps_a, ceps_k0 : Smoothness parameters in ceps_kernel
                        eg. ceps_kernel(k) = (a/(1+(k/k0)**2))**2
                        a = ceps_a,  k0 = ceps_k0

    sm, sv : slope_mean = expected exponent of power law (e.g. -4),
                slope_variance (default=1)

    im, iv : y-intercept_mean, y-intercept_variance  of power_slope
    '''
    def __init__(self, s_space, Npixdof, ceps_a, ceps_k, sm, sv, im, iv,
Martin Reinecke's avatar
Martin Reinecke committed
101
                 keys=['tau', 'phi']):
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
106
107
        from ..operators.exp_transform import ExpTransform
        from ..operators.qht_operator import QHTOperator
        from ..operators.slope_operator import SlopeOperator
        from ..operators.symmetrizing_operator import SymmetrizingOperator

        h_space = s_space.get_default_codomain()
108
        self._exp_transform = ExpTransform(PowerSpace(h_space), Npixdof)
Martin Reinecke's avatar
Martin Reinecke committed
109
110
111
112
113
114
115
116
        logk_space = self._exp_transform.domain[0]
        qht = QHTOperator(target=logk_space)
        dof_space = qht.domain[0]
        sym = SymmetrizingOperator(logk_space)

        phi_mean = np.array([sm, im])
        phi_sig = np.array([sv, iv])

117
118
        self._slope = SlopeOperator(logk_space, phi_sig)
        self._norm_phi_mean = Field.from_global_data(self._slope.domain,
Martin Reinecke's avatar
Martin Reinecke committed
119
                                                     phi_mean/phi_sig)
Martin Reinecke's avatar
Martin Reinecke committed
120

Martin Reinecke's avatar
Martin Reinecke committed
121
        self._domain = MultiDomain.make({keys[0]: dof_space,
122
                                         keys[1]: self._slope.domain})
Martin Reinecke's avatar
Martin Reinecke committed
123
        self._target = self._exp_transform.target
Martin Reinecke's avatar
Martin Reinecke committed
124
125
126
127

        kern = lambda k: _ceps_kernel(dof_space, k, ceps_a, ceps_k)
        cepstrum = create_cepstrum_amplitude_field(dof_space, kern)

Martin Reinecke's avatar
Martin Reinecke committed
128
        self._smooth_op = sym(qht(makeOp(sqrt(cepstrum))))
Martin Reinecke's avatar
Martin Reinecke committed
129
130
        self._keys = tuple(keys)

Philipp Arras's avatar
Changes  
Philipp Arras committed
131
132
133
        self._qht = qht
        self._ceps = makeOp(sqrt(cepstrum))

Martin Reinecke's avatar
Martin Reinecke committed
134
    def apply(self, x):
135
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
136
137
138
139
140
        smooth_spec = self._smooth_op(x[self._keys[0]])
        phi = x[self._keys[1]] + self._norm_phi_mean
        linear_spec = self._slope(phi)
        loglog_spec = smooth_spec + linear_spec
        return self._exp_transform((0.5*loglog_spec).exp())
Philipp Arras's avatar
Changes  
Philipp Arras committed
141
142
143
144
145
146
147
148

    @property
    def qht(self):
        return self._qht

    @property
    def ceps(self):
        return self._ceps
Philipp Arras's avatar
Philipp Arras committed
149
150
151
152

    @property
    def norm_phi_mean(self):
        return self._norm_phi_mean