test_nifty_transforms.py 5.75 KB
Newer Older
Jait Dixit's avatar
Jait Dixit committed
1
2
3
4
5
6
7
8
9
import numpy as np
from numpy.testing import assert_equal, assert_almost_equal, assert_raises

from nose_parameterized import parameterized
import unittest
import itertools

from nifty import RGSpace, LMSpace, HPSpace, GLSpace
from nifty import transformator
Jait Dixit's avatar
Jait Dixit committed
10
from nifty.transformations.transformation import Transformation
Jait Dixit's avatar
Jait Dixit committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from nifty.rg.rg_space import gc as RG_GC
import d2o


###############################################################################

def custom_name_func(testcase_func, param_num, param):
    return "%s_%s" % (
        testcase_func.__name__,
        parameterized.to_safe_name("_".join(str(x) for x in param.args)),
    )


###############################################################################

rg_fft_modules = []
for name in ['gfft', 'gfft_dummy', 'pyfftw']:
    if RG_GC.validQ('fft_module', name):
        rg_fft_modules += [name]


Jait Dixit's avatar
Jait Dixit committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
rg_test_shapes = [(128, 128), (179, 179), (512, 512)]

rg_test_data = np.array(
    [[0.38405405 + 0.32460996j, 0.02718878 + 0.08326207j,
      0.78792080 + 0.81192595j, 0.17535687 + 0.68054781j,
      0.93044845 + 0.71942995j, 0.21179999 + 0.00637665j],
     [0.10905553 + 0.3027462j, 0.37361237 + 0.68434316j,
      0.94070232 + 0.34129582j, 0.04658034 + 0.4575192j,
      0.45057929 + 0.64297612j, 0.01007361 + 0.24953504j],
     [0.39579662 + 0.70881906j, 0.01614435 + 0.82603832j,
      0.84036344 + 0.50321592j, 0.87699553 + 0.40337862j,
      0.11816016 + 0.43332373j, 0.76627757 + 0.66327959j],
     [0.77272335 + 0.18277367j, 0.93341953 + 0.58105518j,
      0.27227913 + 0.17458168j, 0.70204032 + 0.81397425j,
      0.12422993 + 0.19215286j, 0.30897158 + 0.47364969j],
     [0.24702012 + 0.54534373j, 0.55206013 + 0.98406613j,
      0.57408167 + 0.55685406j, 0.87991341 + 0.52534323j,
      0.93912604 + 0.97186519j, 0.77778942 + 0.45812051j],
     [0.79367868 + 0.48149411j, 0.42484378 + 0.74870011j,
      0.79611264 + 0.50926774j, 0.35372794 + 0.10468412j,
      0.46140736 + 0.09449825j, 0.82044644 + 0.95992843j]])

Jait Dixit's avatar
Jait Dixit committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
###############################################################################

class TestRGSpaceTransforms(unittest.TestCase):
    @parameterized.expand(rg_fft_modules, testcase_func_name=custom_name_func)
    def test_check_codomain_none(self, module):
        x = RGSpace((8, 8))
        with assert_raises(ValueError):
            transformator.create(x, None, module=module)

    @parameterized.expand(rg_fft_modules, testcase_func_name=custom_name_func)
    def test_check_codomain_mismatch(self, module):
        x = RGSpace((8, 8))
        y = LMSpace(8)
        with assert_raises(TypeError):
            transformator.create(x, y, module=module)

Jait Dixit's avatar
Jait Dixit committed
70
71
72
73
74
75
76
77
78
79
    @parameterized.expand(
        itertools.product([0, 1, 2], [None, (1, 1), (10, 10)], [False, True]),
        testcase_func_name=custom_name_func
    )
    def test_check_codomain_rgspecific(self, complexity, distances, harmonic):
        x = RGSpace((8, 8), complexity=complexity,
                    distances=distances, harmonic=harmonic)
        assert(Transformation.check_codomain(x, x.get_codomain()))
        assert(Transformation.check_codomain(x, x.get_codomain()))

Jait Dixit's avatar
Jait Dixit committed
80
81
82
83
84
85
86
87
88
89
    @parameterized.expand(rg_fft_modules, testcase_func_name=custom_name_func)
    def test_shapemismatch(self, module):
        x = RGSpace((8, 8))
        b = d2o.distributed_data_object(np.ones((8, 8)))
        with assert_raises(ValueError):
            transformator.create(
                x, x.get_codomain(), module=module
            ).transform(b, axes=(0, 1, 2))

    @parameterized.expand(
Jait Dixit's avatar
Jait Dixit committed
90
        itertools.product(rg_fft_modules, rg_test_shapes),
Jait Dixit's avatar
Jait Dixit committed
91
92
93
94
95
96
97
98
99
100
101
102
103
        testcase_func_name=custom_name_func
    )
    def test_local_ndarray(self, module, shape):
        x = RGSpace(shape)
        a = np.ones(shape)
        assert np.allclose(
            transformator.create(
                x, x.get_codomain(), module=module
            ).transform(a),
            np.fft.fftn(a)
        )

    @parameterized.expand(
Jait Dixit's avatar
Jait Dixit committed
104
        itertools.product(rg_fft_modules, rg_test_shapes),
Jait Dixit's avatar
Jait Dixit committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        testcase_func_name=custom_name_func
    )
    def test_local_notzero(self, module, shape):
        x = RGSpace(shape[0])  # all tests along axis 1
        a = np.ones(shape)
        b = d2o.distributed_data_object(a)
        assert np.allclose(
            transformator.create(
                x, x.get_codomain(), module=module
            ).transform(b, axes=(1,)),
            np.fft.fftn(a, axes=(1,))
        )

    @parameterized.expand(
Jait Dixit's avatar
Jait Dixit committed
119
        itertools.product(rg_fft_modules, rg_test_shapes),
Jait Dixit's avatar
Jait Dixit committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        testcase_func_name=custom_name_func
    )
    def test_not(self, module, shape):
        x = RGSpace(shape)
        a = np.ones(shape)
        b = d2o.distributed_data_object(a, distribution_strategy='not')
        assert np.allclose(
            transformator.create(
                x, x.get_codomain(), module=module
            ).transform(b),
            np.fft.fftn(a)
        )

    @parameterized.expand(
Jait Dixit's avatar
Jait Dixit committed
134
        itertools.product(rg_test_shapes),
Jait Dixit's avatar
Jait Dixit committed
135
136
        testcase_func_name=custom_name_func
    )
Jait Dixit's avatar
Jait Dixit committed
137
    def test_mpi_axesnone(self, shape):
Jait Dixit's avatar
Jait Dixit committed
138
139
140
141
142
        x = RGSpace(shape)
        a = np.ones(shape)
        b = d2o.distributed_data_object(a)
        assert np.allclose(
            transformator.create(
Jait Dixit's avatar
Jait Dixit committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
                x, x.get_codomain(), module='pyfftw'
            ).transform(b),
            np.fft.fftn(a)
        )

    @parameterized.expand(
        itertools.product(rg_test_shapes),
        testcase_func_name=custom_name_func
    )
    def test_mpi_axesnone_equal(self, shape):
        x = RGSpace(shape)
        a = np.ones(shape)
        b = d2o.distributed_data_object(a, distribution_strategy='equal')
        assert np.allclose(
            transformator.create(
                x, x.get_codomain(), module='pyfftw'
Jait Dixit's avatar
Jait Dixit committed
159
160
161
162
163
164
            ).transform(b),
            np.fft.fftn(a)
        )

if __name__ == '__main__':
    unittest.main()