metric_gaussian_kl.py 6.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

from .. import utilities
Philipp Arras's avatar
Philipp Arras committed
19
20
from ..linearization import Linearization
from ..operators.energy_operators import StandardHamiltonian
21
22
from ..probing import approximation2endo
from ..sugar import makeOp
Philipp Arras's avatar
Philipp Arras committed
23
from .energy import Energy
24
25
26


class MetricGaussianKL(Energy):
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
    """Provides the sampled Kullback-Leibler divergence between a distribution
    and a Metric Gaussian.

Philipp Arras's avatar
Docs  
Philipp Arras committed
30
31
32
33
    A Metric Gaussian is used to approximate another probability distribution.
    It is a Gaussian distribution that uses the Fisher information metric of
    the other distribution at the location of its mean to approximate the
    variance. In order to infer the mean, a stochastic estimate of the
Martin Reinecke's avatar
Martin Reinecke committed
34
    Kullback-Leibler divergence is minimized. This estimate is obtained by
Philipp Arras's avatar
Docs  
Philipp Arras committed
35
36
37
38
39
    sampling the Metric Gaussian at the current mean. During minimization
    these samples are kept constant; only the mean is updated. Due to the
    typically nonlinear structure of the true distribution these samples have
    to be updated eventually by intantiating `MetricGaussianKL` again. For the
    true probability distribution the standard parametrization is assumed.
40
41
42
43

    Parameters
    ----------
    mean : Field
Philipp Arras's avatar
Docs  
Philipp Arras committed
44
        Mean of the Gaussian probability distribution.
Jakob Knollmueller's avatar
Jakob Knollmueller committed
45
    hamiltonian : StandardHamiltonian
Philipp Arras's avatar
Docs  
Philipp Arras committed
46
        Hamiltonian of the approximated probability distribution.
47
    n_samples : integer
Philipp Arras's avatar
Docs  
Philipp Arras committed
48
        Number of samples used to stochastically estimate the KL.
49
    constants : list
Philipp Arras's avatar
Docs  
Philipp Arras committed
50
51
        List of parameter keys that are kept constant during optimization.
        Default is no constants.
52
    point_estimates : list
Philipp Arras's avatar
Docs  
Philipp Arras committed
53
54
55
        List of parameter keys for which no samples are drawn, but that are
        (possibly) optimized for, corresponding to point estimates of these.
        Default is to draw samples for the complete domain.
56
57
    mirror_samples : boolean
        Whether the negative of the drawn samples are also used,
Philipp Arras's avatar
Docs  
Philipp Arras committed
58
        as they are equally legitimate samples. If true, the number of used
59
        samples doubles. Mirroring samples stabilizes the KL estimate as
Philipp Arras's avatar
Docs  
Philipp Arras committed
60
        extreme sample variation is counterbalanced. Default is False.
61
62
63
    napprox : int
        Number of samples for computing preconditioner for sampling. No
        preconditioning is done by default.
Philipp Arras's avatar
Philipp Arras committed
64
65
    _samples : None
        Only a parameter for internal uses. Typically not to be set by users.
66

Philipp Arras's avatar
Docs  
Philipp Arras committed
67
68
69
70
71
72
73
74
    Note
    ----
    The two lists `constants` and `point_estimates` are independent from each
    other. It is possible to sample along domains which are kept constant
    during minimization and vice versa.

    See also
    --------
75
76
    `Metric Gaussian Variational Inference`, Jakob Knollmüller,
    Torsten A. Enßlin, `<https://arxiv.org/abs/1901.11033>`_
77
78
    """

Martin Reinecke's avatar
typo  
Martin Reinecke committed
79
    def __init__(self, mean, hamiltonian, n_samples, constants=[],
Philipp Arras's avatar
Philipp Arras committed
80
                 point_estimates=[], mirror_samples=False,
81
                 napprox=0, _samples=None):
82
        super(MetricGaussianKL, self).__init__(mean)
Philipp Arras's avatar
Philipp Arras committed
83
84
85

        if not isinstance(hamiltonian, StandardHamiltonian):
            raise TypeError
86
        if hamiltonian.domain is not mean.domain:
Philipp Arras's avatar
Philipp Arras committed
87
88
89
90
91
92
            raise ValueError
        if not isinstance(n_samples, int):
            raise TypeError
        self._constants = list(constants)
        self._point_estimates = list(point_estimates)
        if not isinstance(mirror_samples, bool):
93
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
94

95
        self._hamiltonian = hamiltonian
Philipp Arras's avatar
Philipp Arras committed
96

97
98
99
        if _samples is None:
            met = hamiltonian(Linearization.make_partial_var(
                mean, point_estimates, True)).metric
100
101
            if napprox > 1:
                met._approximation = makeOp(approximation2endo(met, napprox))
102
            _samples = tuple(met.draw_sample(from_inverse=True)
Martin Reinecke's avatar
typo  
Martin Reinecke committed
103
                             for _ in range(n_samples))
104
105
106
107
            if mirror_samples:
                _samples += tuple(-s for s in _samples)
        self._samples = _samples

108
        # FIXME Use simplify for constant input instead
109
110
111
112
113
114
115
116
117
118
119
120
121
        self._lin = Linearization.make_partial_var(mean, constants)
        v, g = None, None
        for s in self._samples:
            tmp = self._hamiltonian(self._lin+s)
            if v is None:
                v = tmp.val.local_data[()]
                g = tmp.gradient
            else:
                v += tmp.val.local_data[()]
                g = g + tmp.gradient
        self._val = v / len(self._samples)
        self._grad = g * (1./len(self._samples))
        self._metric = None
122
        self._napprox = napprox
123
124
125

    def at(self, position):
        return MetricGaussianKL(position, self._hamiltonian, 0,
Philipp Arras's avatar
Philipp Arras committed
126
                                self._constants, self._point_estimates,
127
                                napprox=self._napprox, _samples=self._samples)
128
129
130
131
132
133
134
135
136
137
138
139

    @property
    def value(self):
        return self._val

    @property
    def gradient(self):
        return self._grad

    def _get_metric(self):
        if self._metric is None:
            lin = self._lin.with_want_metric()
Martin Reinecke's avatar
Martin Reinecke committed
140
141
            mymap = map(lambda v: self._hamiltonian(lin+v).metric,
                        self._samples)
142
143
144
145
146
147
            self._unscaled_metric = utilities.my_sum(mymap)
            self._metric = self._unscaled_metric.scale(1./len(self._samples))

    def unscaled_metric(self):
        self._get_metric()
        return self._unscaled_metric, 1/len(self._samples)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def apply_metric(self, x):
        self._get_metric()
        return self._metric(x)

    @property
    def metric(self):
        self._get_metric()
        return self._metric

    @property
    def samples(self):
        return self._samples

    def __repr__(self):
        return 'KL ({} samples):\n'.format(len(
Philipp Arras's avatar
Philipp Arras committed
164
            self._samples)) + utilities.indent(self._hamiltonian.__repr__())