field.py 30.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19 20 21
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
22 23
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
24

25
from d2o import distributed_data_object,\
26
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
27

28
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
29

30
from nifty.domain_object import DomainObject
31

32
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
33

csongor's avatar
csongor committed
34
import nifty.nifty_utilities as utilities
35 36
from nifty.random import Random

csongor's avatar
csongor committed
37

Jait Dixit's avatar
Jait Dixit committed
38
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
39
    # ---Initialization methods---
40

41
    def __init__(self, domain=None, val=None, dtype=None,
42
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
43

44
        self.domain = self._parse_domain(domain=domain, val=val)
45
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
46

Theo Steininger's avatar
Theo Steininger committed
47
        self.dtype = self._infer_dtype(dtype=dtype,
48
                                       val=val)
49

50 51 52
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
53

54 55 56 57
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
58

59
    def _parse_domain(self, domain, val=None):
60
        if domain is None:
61 62 63 64
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
65
        elif isinstance(domain, DomainObject):
66
            domain = (domain,)
67 68 69
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
70
        for d in domain:
71
            if not isinstance(d, DomainObject):
72 73
                raise TypeError(
                    "Given domain contains something that is not a "
74
                    "DomainObject instance.")
csongor's avatar
csongor committed
75 76
        return domain

Theo Steininger's avatar
Theo Steininger committed
77 78 79 80 81 82 83 84 85 86
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
87

88
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
89
        if dtype is None:
90
            try:
91
                dtype = val.dtype
92
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
93 94 95
                try:
                    if val is None:
                        raise TypeError
96
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
97
                except(TypeError):
98
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
99
        else:
100
            dtype = np.dtype(dtype)
101

Theo Steininger's avatar
Theo Steininger committed
102
        return dtype
103

104 105
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
106
            if isinstance(val, distributed_data_object):
107
                distribution_strategy = val.distribution_strategy
108
            elif isinstance(val, Field):
109
                distribution_strategy = val.distribution_strategy
110
            else:
111
                self.logger.debug("distribution_strategy set to default!")
112
                distribution_strategy = gc['default_distribution_strategy']
113
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
114 115 116
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
117
        return distribution_strategy
118 119

    # ---Factory methods---
120

121
    @classmethod
122
    def from_random(cls, random_type, domain=None, dtype=None,
123
                    distribution_strategy=None, **kwargs):
124
        # create a initially empty field
125
        f = cls(domain=domain, dtype=dtype,
126
                distribution_strategy=distribution_strategy)
127 128 129 130 131 132 133

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
134
        # extract the distributed_data_object from f and apply the appropriate
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
162
        else:
163 164
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
165

166
        return random_arguments
csongor's avatar
csongor committed
167

168 169 170 171
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
172
        # check if all spaces in `self.domain` are either harmonic or
173 174 175
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
176
                self.logger.info(
177
                    "Field has a space in `domain` which is neither "
178 179 180
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
181 182 183 184 185
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
186 187 188
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
189 190

        if len(spaces) == 0:
191 192
            raise ValueError(
                "No space for analysis specified.")
193
        elif len(spaces) > 1:
194 195
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
196 197 198 199

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
200 201
            raise ValueError(
                "The analyzed space must be harmonic.")
202

203 204 205 206 207 208
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

209 210 211 212
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

213 214 215 216 217
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

218 219
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
220
                                  distribution_strategy=distribution_strategy,
221 222
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
223

224
        # extract pindex and rho from power_domain
225 226
        pindex = power_domain.pindex
        rho = power_domain.rho
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
245 246 247 248 249 250 251 252 253
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

254 255 256
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
285
            raise ValueError("pindex's distribution strategy must be "
286 287 288 289 290 291
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
292
                    "A slicing distributor shall not be reshaped to "
293 294 295 296 297 298 299 300 301 302 303 304 305
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

306
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
307
                         mean=None, std=None):
308

309 310 311
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
312 313 314
        if spaces is None:
            spaces = range(len(self.domain))

315 316 317 318 319
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
320 321 322

        # create the result domain
        result_domain = list(self.domain)
323 324 325 326
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            harmonic_domain = power_space.harmonic_domain
            result_domain[power_space_index] = harmonic_domain
327 328 329

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
330
        if real_power:
331
            result_list = [None]
332 333
        else:
            result_list = [None, None]
334

335 336
        result_list = [self.__class__.from_random(
                             'normal',
337 338 339
                             mean=mean,
                             std=std,
                             domain=result_domain,
340
                             dtype=np.complex,
341
                             distribution_strategy=self.distribution_strategy)
342 343 344 345 346 347
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

366
        if real_signal:
367 368
            for power_space_index in spaces:
                harmonic_domain = result_domain[power_space_index]
369 370 371 372 373 374
                result_val_list = [harmonic_domain.hermitian_decomposition(
                                    result_val,
                                    axes=result.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
                                   for (result, result_val)
                                   in zip(result_list, result_val_list)]
375 376 377 378 379 380 381

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
382
        else:
383 384 385 386 387 388
            result = result_list[0] + 1j*result_list[1]

        return result

    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
389 390 391

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
392
        pindex = power_space.pindex
393 394 395 396 397 398 399
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
400
            self.logger.warn(
401
                "The distribution_stragey of pindex does not fit the "
402 403 404 405 406 407 408 409 410 411
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
412 413
        local_rescaler = spec[local_blow_up]
        return local_rescaler
414

Theo Steininger's avatar
Theo Steininger committed
415
    # ---Properties---
416

Theo Steininger's avatar
Theo Steininger committed
417
    def set_val(self, new_val=None, copy=False):
418 419
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
420 421
            new_val = new_val.copy()
        self._val = new_val
422
        return self
csongor's avatar
csongor committed
423

424
    def get_val(self, copy=False):
425 426 427
        if self._val is None:
            self.set_val(None)

428
        if copy:
Theo Steininger's avatar
Theo Steininger committed
429
            return self._val.copy()
430
        else:
Theo Steininger's avatar
Theo Steininger committed
431
            return self._val
csongor's avatar
csongor committed
432

Theo Steininger's avatar
Theo Steininger committed
433 434
    @property
    def val(self):
435
        return self.get_val(copy=False)
csongor's avatar
csongor committed
436

Theo Steininger's avatar
Theo Steininger committed
437 438
    @val.setter
    def val(self, new_val):
439
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
440

441 442
    @property
    def shape(self):
443
        shape_tuple = tuple(sp.shape for sp in self.domain)
444 445 446 447
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
448

449
        return global_shape
csongor's avatar
csongor committed
450

451 452
    @property
    def dim(self):
453
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
454 455 456 457
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
458

459 460
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
461 462 463 464 465 466 467 468
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
469
        try:
Theo Steininger's avatar
Theo Steininger committed
470
            return reduce(lambda x, y: x * y, volume_tuple)
471
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
472
            return 0.
473

Theo Steininger's avatar
Theo Steininger committed
474
    # ---Special unary/binary operations---
475

csongor's avatar
csongor committed
476 477 478
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
479 480
        else:
            dtype = np.dtype(dtype)
481

482 483
        casted_x = x

484
        for ind, sp in enumerate(self.domain):
485
            casted_x = sp.pre_cast(casted_x,
486 487 488
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
489 490

        for ind, sp in enumerate(self.domain):
491 492
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
493

494
        return casted_x
csongor's avatar
csongor committed
495

Theo Steininger's avatar
Theo Steininger committed
496
    def _actual_cast(self, x, dtype=None):
497
        if isinstance(x, Field):
csongor's avatar
csongor committed
498 499 500 501 502
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

503
        return_x = distributed_data_object(
504 505 506
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
507 508
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
509

510
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
511
        copied_val = self.get_val(copy=True)
512 513 514 515
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
516 517
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
518

519
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
520 521
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
522
        else:
Theo Steininger's avatar
Theo Steininger committed
523
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
524

Theo Steininger's avatar
Theo Steininger committed
525 526 527 528
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
529

530 531
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
532

Theo Steininger's avatar
Theo Steininger committed
533 534 535 536 537 538 539 540 541 542
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
543
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
544 545 546 547
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
548
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
549
        return new_field
csongor's avatar
csongor committed
550

Theo Steininger's avatar
Theo Steininger committed
551 552 553 554 555 556 557
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
558
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
559 560 561 562 563 564
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
565
        if inplace:
csongor's avatar
csongor committed
566 567 568 569
            new_field = self
        else:
            new_field = self.copy_empty()

570
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
571

572
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
573
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
574
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
575

576
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
577 578 579 580 581
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
582 583

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
584 585
        return new_field

586 587 588 589 590
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
591

Martin Reinecke's avatar
Martin Reinecke committed
592
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
593 594 595 596 597
        if bare:
            y = self
        else:
            y = self.weight(power=1)

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
613

614
    def norm(self, q=2):
csongor's avatar
csongor committed
615 616 617 618 619 620 621 622 623 624 625 626 627 628
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
629
        if q == 2:
630
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
631
        else:
632
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

649
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
650
        new_val = new_val.conjugate()
651
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
652 653 654

        return work_field

Theo Steininger's avatar
Theo Steininger committed
655
    # ---General unary/contraction methods---
656

Theo Steininger's avatar
Theo Steininger committed
657 658
    def __pos__(self):
        return self.copy()
659

Theo Steininger's avatar
Theo Steininger committed
660 661 662 663
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
664 665
        return return_field

Theo Steininger's avatar
Theo Steininger committed
666 667 668 669 670
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
671

672
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
673 674 675 676 677
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
678

679
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
680 681

        try:
Theo Steininger's avatar
Theo Steininger committed
682
            axes_list = reduce(lambda x, y: x+y, axes_list)
683
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
684
            axes_list = ()
csongor's avatar
csongor committed
685

Theo Steininger's avatar
Theo Steininger committed
686 687 688
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
689

Theo Steininger's avatar
Theo Steininger committed
690 691 692
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
693
        else:
Theo Steininger's avatar
Theo Steininger committed
694 695 696
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
697

Theo Steininger's avatar
Theo Steininger committed
698 699 700 701
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
702

703 704
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
705

706 707
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
708

709 710
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
711

712 713
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
714

715 716
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
717

718 719
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
720

721 722
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
723

724 725
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
726

727 728
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
729

730 731
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
732

733 734
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
735

Theo Steininger's avatar
Theo Steininger committed
736
    # ---General binary methods---
csongor's avatar
csongor committed
737

Theo Steininger's avatar
Theo Steininger committed
738
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
739
        # if other is a field, make sure that the domains match
740
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
741 742 743 744 745
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
746 747
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
748
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
749

Theo Steininger's avatar
Theo Steininger committed
750 751
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
752 753 754 755

        if inplace:
            working_field = self
        else:
756
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
757

Theo Steininger's avatar
Theo Steininger committed
758
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
759 760 761
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
762
        return self._binary_helper(other, op='__add__')
763

764
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
765
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
766 767

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
768
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
769 770

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
771
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
772 773

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
774
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
775 776

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
777
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
778 779

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
780
        return self._binary_helper(other, op='__mul__')
781

782
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
783
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
784 785

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
786
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
787 788

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
789
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
790 791

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
792
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
793 794

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
795
        return self._binary_helper(other, op='__idiv__', inplace=True)
796

csongor's avatar
csongor committed
797
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
798
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
799 800

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
801
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
802 803

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
804
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
805 806

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
807
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
808 809

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
810
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
811 812 813 814 815

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
816
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
817 818 819 820 821

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
822
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
823 824

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
825
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
826 827

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
828 829 830 831 832 833 834 835 836 837 838 839 840
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
841

Jait Dixit's avatar
Jait Dixit committed
842 843 844
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
845 846 847
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
848
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
849

Theo Steininger's avatar
Theo Steininger committed
850 851 852 853
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
854 855 856 857 858 859 860

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
861
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
862 863 864 865 866 867
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
868
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
869
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
870 871
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
872
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
873 874 875 876 877 878

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
879 880 881
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
882 883

        return new_field
884

Theo Steininger's avatar
Theo Steininger committed
885

886
class EmptyField(Field):
csongor's avatar
csongor committed
887 888
    def __init__(self):
        pass