extra.py 4.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17
18

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
fix  
Martin Reinecke committed
20
21
22
from .field import Field
from .linearization import Linearization
from .sugar import from_random
23

Martin Reinecke's avatar
Martin Reinecke committed
24
__all__ = ["consistency_check", "check_value_gradient_consistency",
Martin Reinecke's avatar
Martin Reinecke committed
25
           "check_value_gradient_metric_consistency"]
26

Philipp Arras's avatar
Philipp Arras committed
27

Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


def _full_implementation(op, domain_dtype, target_dtype, atol, rtol):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
                      atol=0, rtol=1e-7):
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
                         rtol)


Martin Reinecke's avatar
Martin Reinecke committed
74
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
75
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
80
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
81
    else:
Martin Reinecke's avatar
Martin Reinecke committed
82
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
86
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
87
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
88
89
90
91
92
93
94
95
96
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
97

Martin Reinecke's avatar
Martin Reinecke committed
98
def _check_consistency(op, loc, tol, ntries, do_metric):
Martin Reinecke's avatar
Martin Reinecke committed
99
    for _ in range(ntries):
100
        lin = op(Linearization.make_var(loc, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
101
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
102
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
106
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
107
            linmid = op(Linearization.make_var(locmid, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
108
109
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
110
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
111
112
            cond = (abs(numgrad-dirder) <= xtol).all()
            if do_metric:
Martin Reinecke's avatar
Martin Reinecke committed
113
114
                dgrad = linmid.metric(dir)
                dgrad2 = (lin2.gradient-lin.gradient)
Martin Reinecke's avatar
Martin Reinecke committed
115
116
                cond = cond and (abs(dgrad-dgrad2) <= xtol).all()
            if cond:
Martin Reinecke's avatar
Martin Reinecke committed
117
118
119
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
120
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
121
122
123
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Martin Reinecke's avatar
Martin Reinecke committed
124
125


Martin Reinecke's avatar
Martin Reinecke committed
126
127
128
129
def check_value_gradient_consistency(op, loc, tol=1e-8, ntries=100):
    _check_consistency(op, loc, tol, ntries, False)


Martin Reinecke's avatar
Martin Reinecke committed
130
def check_value_gradient_metric_consistency(op, loc, tol=1e-8, ntries=100):
Martin Reinecke's avatar
Martin Reinecke committed
131
    _check_consistency(op, loc, tol, ntries, True)