test_power.py 7.1 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import unittest
import nifty4 as ift
import numpy as np
from itertools import product
from test.common import expand
from numpy.testing import assert_allclose


27
class Energy_Tests(unittest.TestCase):
Philipp Arras's avatar
Philipp Arras committed
28
    @expand(product([ift.RGSpace(64, distances=.789),
29
30
31
32
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPower(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
33
34
35
36
37
38
39
40
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

41
42
43
44
45
46
        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
Philipp Arras's avatar
Philipp Arras committed
47
        s = xi * A
Martin Reinecke's avatar
Martin Reinecke committed
48
        Instrument = ift.ScalingOperator(1., space)
Philipp Arras's avatar
Philipp Arras committed
49
50
51
52
53
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
54
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

Philipp Arras's avatar
Philipp Arras committed
62
        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1./(1+k**2))
Philipp Arras's avatar
Philipp Arras committed
63
64
65
66
67

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

        energy0 = ift.library.CriticalPowerEnergy(
Philipp Arras's avatar
Philipp Arras committed
68
            position=tau0, m=s, inverter=inverter, D=D, samples=10, smoothness_prior=1.)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
69
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
70
71
72

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
73
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
74
75
76
77
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
78
79
80
81
                    [ift.library.Exponential, ift.library.Linear],
                    [132, 42, 3]))
    def testNonlinearPower(self, space, nonlinearity, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
82
83
        f = nonlinearity()
        dim = len(space.shape)
84
85
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
Philipp Arras's avatar
Philipp Arras committed
86
87
88
89
90
91
92
93
94
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        tau0 = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(tau0))
        n = ift.Field.from_random(domain=space, random_type='normal')
95
        s = ht(xi * A)
Martin Reinecke's avatar
Martin Reinecke committed
96
        R = ift.ScalingOperator(10., space)
Philipp Arras's avatar
Philipp Arras committed
97
98
99
100
101
102
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
103
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        D = ift.library.NonlinearWienerFilterEnergy(
            position=xi,
            d=d,
            Instrument=R,
            nonlinearity=f,
            power=A,
            N=N,
            S=S,
120
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
121
122
123
124
125
            inverter=inverter).curvature

        energy0 = ift.library.NonlinearPowerEnergy(
            position=tau0,
            d=d,
Philipp Arras's avatar
Philipp Arras committed
126
            xi=xi,
Philipp Arras's avatar
Philipp Arras committed
127
128
129
130
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
131
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
132
            N=N,
133
            samples=10)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
134
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
135
136
137

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
138
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
139
        assert_allclose(a, b, rtol=tol, atol=tol)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183


class Curvature_Tests(unittest.TestCase):
    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPowerCurvature(self, space, seed):
        np.random.seed(seed)
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
        s = xi * A
        diag = ift.Field.ones(space)
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

        energy0 = ift.library.CriticalPowerEnergy(
184
            position=tau0, m=s, inverter=inverter, samples=10)
185
186
187
188
189
190
191
192

        gradient0 = energy0.gradient
        gradient1 = energy0.at(tau1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
        tol = 1e-5
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)