gl_space.py 6.15 KB
Newer Older
csongor's avatar
csongor committed
1 2
from __future__ import division

Jait Dixit's avatar
Jait Dixit committed
3
import itertools
csongor's avatar
csongor committed
4 5
import numpy as np

6 7
import d2o
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
8

9
from nifty.spaces.space import Space
10
from nifty.config import nifty_configuration as gc,\
11
                         dependency_injector as gdi
12
import nifty.nifty_utilities as utilities
csongor's avatar
csongor committed
13 14 15 16 17

gl = gdi.get('libsharp_wrapper_gl')

GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']

18 19

class GLSpace(Space):
csongor's avatar
csongor committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
        `dtype` has to be either numpy.float64 or numpy.float32.

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """

72 73
    # ---Overwritten properties and methods---

74
    def __init__(self, nlat=2, nlon=None, dtype=np.dtype('float')):
csongor's avatar
csongor committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
        # check imports
        if not gc['use_libsharp']:
101 102
            raise ImportError(
                "libsharp_wrapper_gl not available or not loaded.")
103 104

        super(GLSpace, self).__init__(dtype)
csongor's avatar
csongor committed
105

106 107
        self._nlat = self._parse_nlat(nlat)
        self._nlon = self._parse_nlon(nlon)
csongor's avatar
csongor committed
108

109
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
110

111 112 113
    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
114 115 116

    @property
    def shape(self):
117
        return (np.int((self.nlat * self.nlon)),)
csongor's avatar
csongor committed
118

119
    @property
120
    def dim(self):
121
        return np.int((self.nlat * self.nlon))
122 123 124 125

    @property
    def total_volume(self):
        return 4 * np.pi
126

127 128 129 130 131
    def copy(self):
        return self.__class__(nlat=self.nlat,
                              nlon=self.nlon,
                              dtype=self.dtype)

Jait Dixit's avatar
Jait Dixit committed
132
    def weight(self, x, power=1, axes=None, inplace=False):
133
        axes = utilities.cast_axis_to_tuple(axes, length=1)
134

135 136
        nlon = self.nlon
        nlat = self.nlat
137 138

        weight = np.array(list(itertools.chain.from_iterable(
139 140
            itertools.repeat(x ** power, nlon)
            for x in gl.vol(nlat))))
Jait Dixit's avatar
Jait Dixit committed
141 142 143

        if axes is not None:
            # reshape the weight array to match the input shape
144
            new_shape = np.ones(len(x.shape), dtype=np.int)
Jait Dixit's avatar
Jait Dixit committed
145 146 147 148 149 150 151
            for index in range(len(axes)):
                new_shape[index] = len(weight)
            weight = weight.reshape(new_shape)

        if inplace:
            x *= weight
            result_x = x
csongor's avatar
csongor committed
152
        else:
Jait Dixit's avatar
Jait Dixit committed
153
            result_x = x * weight
csongor's avatar
csongor committed
154

Jait Dixit's avatar
Jait Dixit committed
155
        return result_x
156

157
    def get_distance_array(self, distribution_strategy):
158 159
        dists = d2o.arange(start=0, stop=self.shape[0],
                           distribution_strategy=distribution_strategy)
160

161
        dists = dists.apply_scalar_function(
162
            lambda x: self._distance_array_helper(divmod(x, self.nlon)),
163
            dtype=np.float)
164 165 166

        return dists

theos's avatar
theos committed
167
    def _distance_array_helper(self, qr_tuple):
168 169
        lat = qr_tuple[0]*(np.pi/(self.nlat-1))
        lon = qr_tuple[1]*(2*np.pi/(self.nlon-1))
170 171 172
        numerator = np.sqrt(np.sin(lat)**2 +
                            (np.sin(lon) * np.cos(lat))**2)
        denominator = np.cos(lon) * np.cos(lat)
173

theos's avatar
theos committed
174
        return np.arctan(numerator / denominator)
175

176
    def get_fft_smoothing_kernel_function(self, sigma):
Jait Dixit's avatar
Jait Dixit committed
177
        if sigma is None:
178
            sigma = np.sqrt(2) * np.pi
Jait Dixit's avatar
Jait Dixit committed
179 180

        return lambda x: np.exp((-0.5 * x**2) / sigma**2)
181

182 183 184 185 186 187 188 189 190 191 192 193 194
    # ---Added properties and methods---

    @property
    def nlat(self):
        return self._nlat

    @property
    def nlon(self):
        return self._nlon

    def _parse_nlat(self, nlat):
        nlat = int(nlat)
        if nlat < 2:
195 196
            raise ValueError(
                "nlat must be a positive number.")
197
        elif nlat % 2 != 0:
198 199
            raise ValueError(
                "nlat must be a multiple of 2.")
200 201 202 203 204 205 206 207
        return nlat

    def _parse_nlon(self, nlon):
        if nlon is None:
            nlon = 2 * self.nlat - 1
        else:
            nlon = int(nlon)
            if nlon != 2 * self.nlat - 1:
208 209
                self.logger.warn("nlon was set to an unrecommended value: "
                                 "nlon <> 2*nlat-1.")
210
        return nlon