test_jacobian.py 6.29 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21
22
23

import nifty5 as ift

24
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


def _make_linearization(type, space, seed):
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
    if type == "Constant":
        return ift.Linearization.make_const(s)
    elif type == "Variable":
        return ift.Linearization.make_var(s)
    raise ValueError('unknown type passed')


def testBasics(space, seed):
    var = _make_linearization("Variable", space, seed)
    model = ift.ScalingOperator(6., var.target)
Martin Reinecke's avatar
Martin Reinecke committed
50
    ift.extra.check_jacobian_consistency(model, var.val)
Philipp Arras's avatar
Philipp Arras committed
51
52
53
54
55
56
57


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
58
59
60
61

    # FIXME Remove this?
    _make_linearization(type1, dom1, seed)
    _make_linearization(type2, dom2, seed)
Philipp Arras's avatar
Philipp Arras committed
62
63

    dom = ift.MultiDomain.union((dom1, dom2))
64
65
    select_s1 = ift.ducktape(None, dom1, "s1")
    select_s2 = ift.ducktape(None, dom2, "s2")
Philipp Arras's avatar
Philipp Arras committed
66
67
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
68
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
69
70
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
71
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
72
73
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
74
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
75
76
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
77
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
78
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
79
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
80
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
81
82
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
83
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
84
    model = select_s1**2
85
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
86
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
87
    model = select_s1.clip(-1, 1)
88
    pos = ift.from_random("normal", dom1)
89
90
91
92
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    f = ift.from_random("normal", space)
    model = select_s1.clip(f-0.1, f+1.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
93
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
94
95
96
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
97
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
98
99
100
101
102


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    np.random.seed(seed)
103
    domain = ift.PowerSpace(space.get_default_codomain())
104
105
    model = ift.SLAmplitude(target=domain, n_pix=4, a=.5, k0=2, sm=3, sv=1.5,
                            im=1.75, iv=1.3)
106
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
107
108
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
109
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
110
111
112
113

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
114
    ift.extra.check_jacobian_consistency(model2, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
115

116
117
118
119
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MfCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
120
    ift.extra.check_jacobian_consistency(model3, pos, ntries=20)
121

Philipp Arras's avatar
Philipp Arras committed
122
123
124
125
126
127

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups    
Philipp Arras committed
128
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
129
    # FIXME All those cdfs and ppfs are not very accurate
Martin Reinecke's avatar
Martin Reinecke committed
130
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
131

132

Philipp Frank's avatar
Philipp Frank committed
133
@pmp('target', [
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
    ift.RGSpace(64, distances=.789, harmonic=True),
    ift.RGSpace([32, 32], distances=.789, harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)
137
])
Martin Reinecke's avatar
Martin Reinecke committed
138
139
140
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
141
142
143
144
145
146
147
148
149
150
151
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
152
153
154
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
155
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
156
    if len(target.shape) > 1:
157
        dct = {
Philipp Frank's avatar
Philipp Frank committed
158
            'target': target,
159
160
161
162
163
164
165
166
167
168
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
169
170
171
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
172
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
173
174
175
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
176
        ift.extra.check_jacobian_consistency(
177
            model, pos, tol=1e-5, ntries=20)