field.py 31.3 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
8
9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19
20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22
23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
28
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35
36
37
38
39
40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44
45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

47
48
49
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
50
51
52

        self.set_val(new_val=val, copy=copy)

53
    def _parse_domain(self, domain, val=None):
54
        if domain is None:
55
56
57
58
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
59
        elif isinstance(domain, Space):
60
            domain = (domain,)
61
62
63
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
64
        for d in domain:
65
            if not isinstance(d, Space):
csongor's avatar
csongor committed
66
                raise TypeError(about._errors.cstring(
67
68
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
69
70
        return domain

71
    def _parse_field_type(self, field_type, val=None):
72
        if field_type is None:
73
74
75
76
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
77
        elif isinstance(field_type, FieldType):
78
            field_type = (field_type,)
79
80
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
81
        for ft in field_type:
82
            if not isinstance(ft, FieldType):
83
                raise TypeError(about._errors.cstring(
84
                    "ERROR: Given object is not a nifty.FieldType."))
85
86
        return field_type

theos's avatar
theos committed
87
88
89
90
91
92
93
94
95
96
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
97

98
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
99
        if dtype is None:
100
101
102
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
103
104
105
106
107
108
109
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
110

theos's avatar
theos committed
111
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
112

theos's avatar
theos committed
113
        return dtype
114

115
116
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
117
            if isinstance(val, distributed_data_object):
118
                distribution_strategy = val.distribution_strategy
119
            elif isinstance(val, Field):
120
                distribution_strategy = val.distribution_strategy
121
122
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
123
124
                distribution_strategy = gc['default_distribution_strategy']
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['all']:
125
            raise ValueError(about._errors.cstring(
126
127
                    "ERROR: Invalid distribution_strategy!"))
        return distribution_strategy
128
129

    # ---Factory methods---
130

131
132
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
133
                    distribution_strategy=None, **kwargs):
134
135
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
136
                distribution_strategy=distribution_strategy)
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
175
        else:
176
177
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
178

179
        return random_arguments
csongor's avatar
csongor committed
180

181
182
183
184
185
186
187
188
189
190
191
192
193
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

216
217
218
219
220
221
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

222
223
224
225
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

226
227
228
229
230
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

231
232
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
233
                                  distribution_strategy=distribution_strategy,
234
235
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
236

237
        # extract pindex and rho from power_domain
238
239
        pindex = power_domain.pindex
        rho = power_domain.rho
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

317
    def power_synthesize(self, spaces=None, real_signal=True):
318
        # assert that all spaces in `self.domain` are either of signal-type or
319
320
        # power_space instances
        for sp in self.domain:
321
            if not sp.harmonic and not isinstance(sp, PowerSpace):
322
323
324
325
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for synthesis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
            raise ValueError(about._errors.cstring(
                "ERROR: A PowerSpace is needed for field synthetization."))

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

362
363
364
365
366
367
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
            about.warnings.cprint(
                "WARNING: The distribution_stragey of pindex does not fit the "
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
428

theos's avatar
theos committed
429
    # ---Properties---
430

theos's avatar
theos committed
431
    def set_val(self, new_val=None, copy=False):
432
433
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
434
435
436
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
437

438
439
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
440
            return self._val.copy()
441
        else:
theos's avatar
theos committed
442
            return self._val
csongor's avatar
csongor committed
443

theos's avatar
theos committed
444
445
446
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
447

theos's avatar
theos committed
448
449
450
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
451

452
453
    @property
    def shape(self):
454
455
456
457
458
459
460
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
461

462
        return global_shape
csongor's avatar
csongor committed
463

464
465
    @property
    def dim(self):
theos's avatar
theos committed
466
467
468
469
470
471
472
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
473

474
475
    @property
    def dof(self):
theos's avatar
theos committed
476
477
478
479
480
481
482
483
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
484
        try:
theos's avatar
theos committed
485
            return reduce(lambda x, y: x * y, volume_tuple)
486
        except TypeError:
theos's avatar
theos committed
487
            return 0
488

theos's avatar
theos committed
489
    # ---Special unary/binary operations---
490

csongor's avatar
csongor committed
491
492
493
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
494
495
        else:
            dtype = np.dtype(dtype)
496

theos's avatar
theos committed
497
        casted_x = self._actual_cast(x, dtype=dtype)
498
499

        for ind, sp in enumerate(self.domain):
500
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
501
                                          axes=self.domain_axes[ind])
502
503
504

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
505
                                          axes=self.field_type_axes[ind])
506
507

        return casted_x
csongor's avatar
csongor committed
508

theos's avatar
theos committed
509
    def _actual_cast(self, x, dtype=None):
510
        if isinstance(x, Field):
csongor's avatar
csongor committed
511
512
513
514
515
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

516
        return_x = distributed_data_object(
517
518
519
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
520
521
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
522
523

    def copy(self, domain=None, dtype=None, field_type=None,
524
             distribution_strategy=None):
theos's avatar
theos committed
525
        copied_val = self.get_val(copy=True)
526
527
528
529
530
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
531
532
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
533

theos's avatar
theos committed
534
    def copy_empty(self, domain=None, dtype=None, field_type=None,
535
                   distribution_strategy=None):
theos's avatar
theos committed
536
537
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
538
        else:
theos's avatar
theos committed
539
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
540

theos's avatar
theos committed
541
542
543
544
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
545

theos's avatar
theos committed
546
547
548
549
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
550

551
552
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
553

theos's avatar
theos committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
568
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
569
570
571
572
573
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
574
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
575
        return new_field
csongor's avatar
csongor committed
576

theos's avatar
theos committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
591
        if inplace:
csongor's avatar
csongor committed
592
593
594
595
            new_field = self
        else:
            new_field = self.copy_empty()

596
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
597

csongor's avatar
csongor committed
598
        if spaces is None:
theos's avatar
theos committed
599
600
601
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
602

603
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
604
605
606
607
608
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
609
610

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
611
612
        return new_field

theos's avatar
theos committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

642
    def norm(self, q=2):
csongor's avatar
csongor committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
657
        if q == 2:
658
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
659
        else:
660
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

677
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
678
        new_val = new_val.conjugate()
679
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
680
681
682

        return work_field

theos's avatar
theos committed
683
    # ---General unary/contraction methods---
684

theos's avatar
theos committed
685
686
    def __pos__(self):
        return self.copy()
687

theos's avatar
theos committed
688
689
690
691
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
692
693
        return return_field

theos's avatar
theos committed
694
695
696
697
698
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
699

theos's avatar
theos committed
700
701
702
703
704
705
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
706

theos's avatar
theos committed
707
708
709
710
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
711

theos's avatar
theos committed
712
713
714
715
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
716
        try:
theos's avatar
theos committed
717
            axes_list = reduce(lambda x, y: x+y, axes_list)
718
        except TypeError:
theos's avatar
theos committed
719
            axes_list = ()
csongor's avatar
csongor committed
720

theos's avatar
theos committed
721
722
723
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
724

theos's avatar
theos committed
725
726
727
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
728
        else:
theos's avatar
theos committed
729
730
731
732
733
734
735
736
737
738
739
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
740

theos's avatar
theos committed
741
742
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
743

theos's avatar
theos committed
744
745
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
746

theos's avatar
theos committed
747
748
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750
751
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753
754
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756
757
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759
760
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762
763
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765
766
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768
769
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771
772
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
773

theos's avatar
theos committed
774
    # ---General binary methods---
csongor's avatar
csongor committed
775

theos's avatar
theos committed
776
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
777
        # if other is a field, make sure that the domains match
778
        if isinstance(other, Field):
theos's avatar
theos committed
779
780
781
782
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
783
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
784
785
786
787
788
789
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
790

theos's avatar
theos committed
791
792
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
793
794
795
796
797
798

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
799
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
800
801
802
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
803
        return self._binary_helper(other, op='__add__')
804

805
    def __radd__(self, other):
theos's avatar
theos committed
806
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
807
808

    def __iadd__(self, other):
theos's avatar
theos committed
809
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
810
811

    def __sub__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
813
814

    def __rsub__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
816
817

    def __isub__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
819
820

    def __mul__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__mul__')
822

823
    def __rmul__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
825
826

    def __imul__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
828
829

    def __div__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
831
832

    def __rdiv__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
834
835

    def __idiv__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__idiv__', inplace=True)
837

csongor's avatar
csongor committed
838
    def __pow__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
840
841

    def __rpow__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
843
844

    def __ipow__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
846
847

    def __lt__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
849
850

    def __le__(self, other):
theos's avatar
theos committed
851
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
852
853
854
855
856

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
857
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
858
859
860
861
862

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
863
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
864
865

    def __ge__(self, other):
theos's avatar
theos committed
866
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
867
868

    def __gt__(self, other):
theos's avatar
theos committed
869
870
871
872
873
874
875
876
877
878
879
880
881
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
882

883

884
class EmptyField(Field):
csongor's avatar
csongor committed
885
886
    def __init__(self):
        pass