lm_space.py 5.6 KB
Newer Older
csongor's avatar
csongor committed
1 2 3 4
from __future__ import division

import numpy as np

5
from nifty.spaces.space import Space
theos's avatar
theos committed
6

7
from nifty.config import nifty_configuration as gc,\
csongor's avatar
csongor committed
8
                         dependency_injector as gdi
theos's avatar
theos committed
9

Jait Dixit's avatar
Jait Dixit committed
10 11 12 13
from lm_helper import _distance_array_helper

from d2o import arange

14 15 16
import logging
logger = logging.getLogger('NIFTy.LMSpace')

csongor's avatar
csongor committed
17 18 19 20
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')


21
class LMSpace(Space):
csongor's avatar
csongor committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """

80
    def __init__(self, lmax, dtype=np.dtype('complex128')):
csongor's avatar
csongor committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """

        # check imports
        if not gc['use_libsharp'] and not gc['use_healpy']:
111 112
            raise ImportError(
                "neither libsharp_wrapper_gl nor healpy activated.")
csongor's avatar
csongor committed
113

csongor's avatar
csongor committed
114 115
        super(LMSpace, self).__init__(dtype)
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
116

117
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
118 119 120 121

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
122 123

    @property
124 125
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
126 127

    @property
128 129 130
    def dim(self):
        l = self.lmax
        m = self.mmax
theos's avatar
theos committed
131 132 133 134
        # the LMSpace consist of the full triangle (including -m's!),
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
        return np.int((l+1)**2 - (l-m)*(l-m+1.))
csongor's avatar
csongor committed
135

136 137 138 139
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
        return np.float(self.dim)
csongor's avatar
csongor committed
140

141 142 143 144
    def copy(self):
        return self.__class__(lmax=self.lmax,
                              mmax=self.mmax,
                              dtype=self.dtype)
csongor's avatar
csongor committed
145

146 147 148
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
149
        else:
150
            return x.copy()
csongor's avatar
csongor committed
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
            lambda x: _distance_array_helper(x, self.lmax),
            dtype=np.float)

        return dists

    def get_smoothing_kernel_function(self, sigma):
        if sigma is None:
            sigma = np.sqrt(2) * np.pi / (self.lmax + 1)

        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
168 169 170 171 172 173 174 175
    # ---Added properties and methods---

    @property
    def lmax(self):
        return self._lmax

    @property
    def mmax(self):
176
        return self._lmax
csongor's avatar
csongor committed
177 178 179 180

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
        if lmax < 1:
181 182
            raise ValueError(
                "negative lmax is not allowed.")
csongor's avatar
csongor committed
183 184
        # exception lmax == 2 (nside == 1)
        if (lmax % 2 == 0) and (lmax > 2):
185
            logger.warn("unrecommended parameter (lmax <> 2*n+1).")
csongor's avatar
csongor committed
186
        return lmax