power_space.py 8.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from .space import Space
from .. import dobj
Theo Steininger's avatar
Theo Steininger committed
22
23


Theo Steininger's avatar
Theo Steininger committed
24
class PowerSpace(Space):
Martin Reinecke's avatar
Martin Reinecke committed
25
    """NIFTy class for spaces of power spectra.
Theo Steininger's avatar
Theo Steininger committed
26
27
28
29
30

    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
31
32
33
34
35
36
37
38
39
40
41
42
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.

        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
Theo Steininger's avatar
Theo Steininger committed
43
44
45
46
47
48
49
        (default : None)

    Notes
    -----
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.
    """
50

51
52
    _powerIndexCache = {}

Martin Reinecke's avatar
Martin Reinecke committed
53
    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
54
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
58
59
60
61
62
63
64
65
66
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.
        """
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
67
68
        assert nbin >= 3, "nbin must be at least 3"
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
69
70

    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
71
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
72
73
74
75
76
77
78
79
80
81
82
83
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.
        """
Martin Reinecke's avatar
Martin Reinecke committed
84
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
85
        assert nbin >= 3, "nbin must be at least 3"
Martin Reinecke's avatar
Martin Reinecke committed
86
87
88
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
89

90
91
92
93
94
95
96
97
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
        if not (isinstance(space, Space) and space.harmonic):
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
98
        dists = space.get_unique_k_lengths()
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
        assert nbin >= 3, "nbin must be at least 3"
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
119
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
120
        super(PowerSpace, self).__init__()
121
        self._needed_for_hash += ['_harmonic_partner', '_binbounds']
122

Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
        if not (isinstance(harmonic_partner, Space) and
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
Martin Reinecke's avatar
Martin Reinecke committed
126
127
128
        if harmonic_partner.scalar_dvol() is None:
            raise ValueError("harmonic partner must have "
                             "scalar volume factors")
129
        self._harmonic_partner = harmonic_partner
Martin Reinecke's avatar
Martin Reinecke committed
130
        pdvol = harmonic_partner.scalar_dvol()
131

Martin Reinecke's avatar
Martin Reinecke committed
132
133
        if binbounds is not None:
            binbounds = tuple(binbounds)
134

Martin Reinecke's avatar
Martin Reinecke committed
135
        key = (harmonic_partner, binbounds)
136
        if self._powerIndexCache.get(key) is None:
137
            k_length_array = self.harmonic_partner.get_k_length_array()
Martin Reinecke's avatar
Martin Reinecke committed
138
139
140
141
142
143
            if binbounds is None:
                tmp = harmonic_partner.get_unique_k_lengths()
                tbb = 0.5*(tmp[:-1]+tmp[1:])
            else:
                tbb = binbounds
            locdat = np.searchsorted(tbb, dobj.local_data(k_length_array.val))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
144
            temp_pindex = dobj.from_local_data(
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
145
                k_length_array.val.shape, locdat, dobj.distaxis(k_length_array.val))
Martin Reinecke's avatar
Martin Reinecke committed
146
            nbin = len(tbb)+1
Martin Reinecke's avatar
Martin Reinecke committed
147
148
            temp_rho = np.bincount(dobj.local_data(temp_pindex).ravel(),
                                   minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
149
            temp_rho = dobj.np_allreduce_sum(temp_rho)
Martin Reinecke's avatar
Martin Reinecke committed
150
            assert not (temp_rho == 0).any(), "empty bins detected"
Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
            # The explicit conversion to float64 is necessary because bincount
            # sometimes returns its result as an integer array, even when
            # floating-point weights are present ...
Martin Reinecke's avatar
Martin Reinecke committed
154
            temp_k_lengths = np.bincount(dobj.local_data(temp_pindex).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
155
                weights=dobj.local_data(k_length_array.val).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
156
                minlength=nbin).astype(np.float64, copy=False)
Martin Reinecke's avatar
Martin Reinecke committed
157
            temp_k_lengths = dobj.np_allreduce_sum(temp_k_lengths) / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
158
            temp_dvol = temp_rho*pdvol
Martin Reinecke's avatar
Martin Reinecke committed
159
160
            self._powerIndexCache[key] = (binbounds, temp_pindex,
                                          temp_k_lengths, temp_dvol)
161

Martin Reinecke's avatar
Martin Reinecke committed
162
        (self._binbounds, self._pindex, self._k_lengths, self._dvol) = \
163
164
            self._powerIndexCache[key]

165
    def __repr__(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
166
167
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
168

169
170
    @property
    def harmonic(self):
171
        return False
172

173
174
    @property
    def shape(self):
Martin Reinecke's avatar
Martin Reinecke committed
175
        return self.k_lengths.shape
176

177
178
179
180
    @property
    def dim(self):
        return self.shape[0]

181
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
182
183
184
185
        return None

    def dvol(self):
        return self._dvol
186

187
    @property
188
    def harmonic_partner(self):
Martin Reinecke's avatar
Martin Reinecke committed
189
        """Returns the Space of which this is the power space."""
190
        return self._harmonic_partner
191
192

    @property
Martin Reinecke's avatar
Martin Reinecke committed
193
    def binbounds(self):
Martin Reinecke's avatar
Martin Reinecke committed
194
195
196
        """Returns the boundaries between the power spectrum bins as a tuple.
        None is used to indicate natural binning.
        """
Martin Reinecke's avatar
Martin Reinecke committed
197
        return self._binbounds
198
199
200

    @property
    def pindex(self):
Martin Reinecke's avatar
Martin Reinecke committed
201
        """Returns a data object having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
202
203
        space containing the indices of the power bin a pixel belongs to.
        """
204
205
206
        return self._pindex

    @property
Martin Reinecke's avatar
Martin Reinecke committed
207
    def k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
208
        """Returns a sorted array of all k-modes."""
Martin Reinecke's avatar
Martin Reinecke committed
209
        return self._k_lengths