vl_bfgs.py 7.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
theos's avatar
theos committed
18

19
from __future__ import absolute_import, division, print_function
20

21
import numpy as np
22
23

from ..compat import *
24
from .descent_minimizer import DescentMinimizer
Martin Reinecke's avatar
Martin Reinecke committed
25
from .line_search_strong_wolfe import LineSearchStrongWolfe
theos's avatar
theos committed
26
27


28
class VL_BFGS(DescentMinimizer):
Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    """Implementation of the Vector-free L-BFGS minimization scheme.

    Find the descent direction by using the inverse Hessian.
    Instead of storing the whole matrix, it stores only the last few
    updates, which are used to do operations requiring the inverse
    Hessian product. The updates are represented in a new basis to optimize
    the algorithm.

    References
    ----------
    W. Chen, Z. Wang, J. Zhou, "Large-scale L-BFGS using MapReduce", 2014,
    Microsoft
    """

Martin Reinecke's avatar
Martin Reinecke committed
43
44
    def __init__(self, controller, line_searcher=LineSearchStrongWolfe(),
                 max_history_length=5):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
45
46
        super(VL_BFGS, self).__init__(controller=controller,
                                      line_searcher=line_searcher)
47
48
        self.max_history_length = max_history_length

49
    def __call__(self, energy):
50
        self._information_store = None
51
        return super(VL_BFGS, self).__call__(energy)
52

Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
53
54
55
    def reset(self):
        self._information_store = None

56
    def get_descent_direction(self, energy):
57
58
        x = energy.position
        gradient = energy.gradient
59
60
61
62
        # initialize the information store if it doesn't already exist
        try:
            self._information_store.add_new_point(x, gradient)
        except AttributeError:
Martin Reinecke's avatar
Martin Reinecke committed
63
64
            self._information_store = _InformationStore(
                self.max_history_length, x0=x, gradient=gradient)
65
66
67
68

        b = self._information_store.b
        delta = self._information_store.delta

69
        descent_direction = delta[0] * b[0]
Martin Reinecke's avatar
Martin Reinecke committed
70
        for i in range(1, len(delta)):
71
            descent_direction = descent_direction + delta[i]*b[i]
72

73
        return descent_direction
theos's avatar
theos committed
74
75


Martin Reinecke's avatar
Martin Reinecke committed
76
class _InformationStore(object):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
77
    """Class for storing a list of past updates.
78

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
79
80
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
81
    max_history_length : int
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
82
83
84
85
86
        Maximum number of stored past updates.
    x0 : Field
        Initial position in variable space.
    gradient : Field
        Gradient at position x0.
87

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
88
89
    Attributes
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
90
    max_history_length : int
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
91
92
        Maximum number of stored past updates.
    s : List
Martin Reinecke's avatar
Martin Reinecke committed
93
        Circular buffer of past position differences, which are Fields.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
94
    y : List
Martin Reinecke's avatar
Martin Reinecke committed
95
        Circular buffer of past gradient differences, which are Fields.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
96
    last_x : Field
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
97
        Latest position in variable space.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
98
    last_gradient : Field
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
99
        Gradient at latest position.
Martin Reinecke's avatar
Martin Reinecke committed
100
    k : int
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
101
        Number of updates that have taken place
Martin Reinecke's avatar
Martin Reinecke committed
102
    ss : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
103
        2D circular buffer of scalar products between different elements of s.
Martin Reinecke's avatar
Martin Reinecke committed
104
    sy : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
105
        2D circular buffer of scalar products between elements of s and y.
Martin Reinecke's avatar
Martin Reinecke committed
106
    yy : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
107
        2D circular buffer of scalar products between different elements of y.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
108
    """
Philipp Arras's avatar
Philipp Arras committed
109

110
111
    def __init__(self, max_history_length, x0, gradient):
        self.max_history_length = max_history_length
112
113
        self.s = [None]*max_history_length
        self.y = [None]*max_history_length
114
115
        self.last_x = x0
        self.last_gradient = gradient
theos's avatar
theos committed
116
        self.k = 0
117

Martin Reinecke's avatar
Martin Reinecke committed
118
        mmax = max_history_length
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
        self.ss = np.empty((mmax, mmax), dtype=np.float64)
        self.sy = np.empty((mmax, mmax), dtype=np.float64)
        self.yy = np.empty((mmax, mmax), dtype=np.float64)
122
123
124

    @property
    def history_length(self):
Martin Reinecke's avatar
Martin Reinecke committed
125
        """Returns the number of currently stored updates."""
126
127
128
129
        return min(self.k, self.max_history_length)

    @property
    def b(self):
130
131
        """Combines s, y and gradient to form the new base vectors b.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
132
133
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
134
        List
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
135
136
            List of new basis vectors.
        """
137
138
        result = []
        m = self.history_length
Martin Reinecke's avatar
Martin Reinecke committed
139
        mmax = self.max_history_length
140

Martin Reinecke's avatar
Martin Reinecke committed
141
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
142
            result.append(self.s[(self.k-m+i) % mmax])
143

Martin Reinecke's avatar
Martin Reinecke committed
144
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
145
            result.append(self.y[(self.k-m+i) % mmax])
146
147
148
149
150
151
152

        result.append(self.last_gradient)

        return result

    @property
    def b_dot_b(self):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
153
        """Generates the (2m+1) * (2m+1) scalar matrix.
154

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
155
        The i,j-th element of the matrix is a scalar product between the i-th
156
157
        and j-th base vector.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
158
159
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
160
        numpy.ndarray
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
161
162
            Scalar matrix.
        """
163
        m = self.history_length
Martin Reinecke's avatar
Martin Reinecke committed
164
        mmax = self.max_history_length
165
166
167
        k = self.k
        result = np.empty((2*m+1, 2*m+1), dtype=np.float)

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
168
        # update the stores
Martin Reinecke's avatar
Martin Reinecke committed
169
        k1 = (k-1) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
170
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
171
            kmi = (k-m+i) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
172
173
174
            self.ss[kmi, k1] = self.ss[k1, kmi] = self.s[kmi].vdot(self.s[k1])
            self.yy[kmi, k1] = self.yy[k1, kmi] = self.y[kmi].vdot(self.y[k1])
            self.sy[kmi, k1] = self.s[kmi].vdot(self.y[k1])
Martin Reinecke's avatar
Martin Reinecke committed
175
        for j in range(m-1):
Martin Reinecke's avatar
Martin Reinecke committed
176
177
            kmj = (k-m+j) % mmax
            self.sy[k1, kmj] = self.s[k1].vdot(self.y[kmj])
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
178

Martin Reinecke's avatar
Martin Reinecke committed
179
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
180
            kmi = (k-m+i) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
181
            for j in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
182
                kmj = (k-m+j) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
183
184
185
                result[i, j] = self.ss[kmi, kmj]
                result[i, m+j] = result[m+j, i] = self.sy[kmi, kmj]
                result[m+i, m+j] = self.yy[kmi, kmj]
186

187
            sgrad_i = self.s[kmi].vdot(self.last_gradient)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
188
            result[2*m, i] = result[i, 2*m] = sgrad_i
189

Martin Reinecke's avatar
fix    
Martin Reinecke committed
190
            ygrad_i = self.y[kmi].vdot(self.last_gradient)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
191
            result[2*m, m+i] = result[m+i, 2*m] = ygrad_i
192

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
193
        result[2*m, 2*m] = self.last_gradient.norm()
194
        return result
theos's avatar
theos committed
195
196

    @property
197
    def delta(self):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
198
        """Calculates the new scalar coefficients (deltas).
199

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
200
201
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
202
        List
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
203
204
            List of the new scalar coefficients (deltas).
        """
205
206
207
208
209
210
211
212
        m = self.history_length
        b_dot_b = self.b_dot_b

        delta = np.zeros(2*m+1, dtype=np.float)
        delta[2*m] = -1

        alpha = np.empty(m, dtype=np.float)

Martin Reinecke's avatar
Martin Reinecke committed
213
214
        for j in range(m-1, -1, -1):
            delta_b_b = sum([delta[l] * b_dot_b[l, j] for l in range(2*m+1)])
215
216
217
            alpha[j] = delta_b_b/b_dot_b[j, m+j]
            delta[m+j] -= alpha[j]

Martin Reinecke's avatar
Martin Reinecke committed
218
        for i in range(2*m+1):
219
220
            delta[i] *= b_dot_b[m-1, 2*m-1]/b_dot_b[2*m-1, 2*m-1]

Martin Reinecke's avatar
Martin Reinecke committed
221
        for j in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
222
            delta_b_b = sum([delta[l]*b_dot_b[m+j, l] for l in range(2*m+1)])
223
224
225
226
227
            beta = delta_b_b/b_dot_b[j, m+j]
            delta[j] += (alpha[j] - beta)

        return delta

theos's avatar
theos committed
228
    def add_new_point(self, x, gradient):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
229
230
        """Updates the s list and y list.

Martin Reinecke's avatar
Martin Reinecke committed
231
232
        Calculates the new position and gradient differences and enters them
        into the respective list.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
233
        """
Martin Reinecke's avatar
Martin Reinecke committed
234
235
236
        mmax = self.max_history_length
        self.s[self.k % mmax] = x - self.last_x
        self.y[self.k % mmax] = gradient - self.last_gradient
theos's avatar
theos committed
237

238
239
        self.last_x = x
        self.last_gradient = gradient
theos's avatar
theos committed
240

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
241
        self.k += 1