plot.py 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18 19
import os

20 21
import numpy as np

Martin Reinecke's avatar
fix  
Martin Reinecke committed
22 23 24 25 26
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
27
from .domains.log_rg_space import LogRGSpace
28
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
fix  
Martin Reinecke committed
29
from .field import Field
30

Martin Reinecke's avatar
Martin Reinecke committed
31 32 33 34 35 36 37 38
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
39
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
41

Martin Reinecke's avatar
Martin Reinecke committed
42 43 44
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
45
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
46
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
47
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
48
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
49 50 51 52 53 54 55 56 57

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
58

59 60

def _rgb_data(spectral_cube):
61 62
    def _eye_sensitivity(energy_bins, spacing=None):
        from scipy.ndimage import zoom
Jakob Knollmueller's avatar
Jakob Knollmueller committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        rgb_high=[[9.85234460e-03, 6.13406271e-04, 0.00000000e+00],
                [1.04118690e-02, 6.49048870e-04, 0.00000000e+00],
               [1.09713934e-02, 6.84691469e-04, 0.00000000e+00],
               [1.15309178e-02, 7.20334068e-04, 0.00000000e+00],
               [1.20904422e-02, 7.55976668e-04, 0.00000000e+00],
               [1.29039276e-02, 8.08680908e-04, 0.00000000e+00],
               [1.37595706e-02, 8.64217381e-04, 0.00000000e+00],
               [1.46152136e-02, 9.19753853e-04, 0.00000000e+00],
               [1.54708566e-02, 9.75290326e-04, 0.00000000e+00],
               [1.63264996e-02, 1.03082680e-03, 0.00000000e+00],
               [1.71821426e-02, 1.08636327e-03, 0.00000000e+00],
               [1.81667722e-02, 1.15137696e-03, 0.00000000e+00],
               [1.93698228e-02, 1.23243904e-03, 0.00000000e+00],
               [2.05728734e-02, 1.31350111e-03, 0.00000000e+00],
               [2.17759241e-02, 1.39456318e-03, 0.00000000e+00],
               [2.29789747e-02, 1.47562526e-03, 0.00000000e+00],
               [2.41820254e-02, 1.55668733e-03, 0.00000000e+00],
               [2.53874406e-02, 1.63793709e-03, 0.00000000e+00],
               [2.70586835e-02, 1.75616085e-03, 0.00000000e+00],
               [2.87299264e-02, 1.87438460e-03, 0.00000000e+00],
               [3.04011692e-02, 1.99260836e-03, 0.00000000e+00],
               [3.20724121e-02, 2.11083211e-03, 0.00000000e+00],
               [3.37436550e-02, 2.22905587e-03, 0.00000000e+00],
               [3.54148979e-02, 2.34727962e-03, 0.00000000e+00],
               [3.75526858e-02, 2.50677171e-03, 0.00000000e+00],
               [3.98413542e-02, 2.67960994e-03, 0.00000000e+00],
               [4.21300226e-02, 2.85244818e-03, 0.00000000e+00],
               [4.44186909e-02, 3.02528642e-03, 0.00000000e+00],
               [4.67073593e-02, 3.19812466e-03, 0.00000000e+00],
               [4.89960277e-02, 3.37096290e-03, 0.00000000e+00],
               [5.17840545e-02, 3.59459245e-03, 0.00000000e+00],
               [5.48783544e-02, 3.84937399e-03, 0.00000000e+00],
               [5.79726543e-02, 4.10415554e-03, 0.00000000e+00],
               [6.10669543e-02, 4.35893709e-03, 0.00000000e+00],
               [6.41612542e-02, 4.61371864e-03, 0.00000000e+00],
               [6.72555541e-02, 4.86850018e-03, 0.00000000e+00],
               [7.09715657e-02, 5.20598062e-03, 0.00000000e+00],
               [7.51114716e-02, 5.59984666e-03, 0.00000000e+00],
               [7.92513775e-02, 5.99371269e-03, 0.00000000e+00],
               [8.33912835e-02, 6.38757873e-03, 0.00000000e+00],
               [8.75311894e-02, 6.78144477e-03, 0.00000000e+00],
               [9.16710953e-02, 7.17531081e-03, 0.00000000e+00],
               [9.67048710e-02, 7.69960083e-03, 0.00000000e+00],
               [1.02165218e-01, 8.28613156e-03, 0.00000000e+00],
               [1.07625564e-01, 8.87266229e-03, 0.00000000e+00],
               [1.13085911e-01, 9.45919302e-03, 0.00000000e+00],
               [1.18546257e-01, 1.00457237e-02, 0.00000000e+00],
               [1.24006604e-01, 1.06322545e-02, 0.00000000e+00],
               [1.30860134e-01, 1.14285362e-02, 0.00000000e+00],
               [1.37932889e-01, 1.22578234e-02, 0.00000000e+00],
               [1.45005644e-01, 1.30871106e-02, 0.00000000e+00],
               [1.52078399e-01, 1.39163978e-02, 0.00000000e+00],
               [1.59151155e-01, 1.47456850e-02, 0.00000000e+00],
               [1.66454559e-01, 1.56214122e-02, 0.00000000e+00],
               [1.75033740e-01, 1.67540109e-02, 0.00000000e+00],
               [1.83612920e-01, 1.78866096e-02, 0.00000000e+00],
               [1.92192101e-01, 1.90192083e-02, 0.00000000e+00],
               [2.00771282e-01, 2.01518070e-02, 0.00000000e+00],
               [2.09350463e-01, 2.12844057e-02, 0.00000000e+00],
               [2.18438958e-01, 2.27487266e-02, 0.00000000e+00],
               [2.27958699e-01, 2.44939217e-02, 0.00000000e+00],
               [2.37478439e-01, 2.62391168e-02, 0.00000000e+00],
               [2.46998180e-01, 2.79843119e-02, 0.00000000e+00],
               [2.56517920e-01, 2.97295070e-02, 0.00000000e+00],
               [2.66089164e-01, 3.14923971e-02, 0.00000000e+00],
               [2.77541802e-01, 3.39016757e-02, 0.00000000e+00],
               [2.88994440e-01, 3.63109543e-02, 0.00000000e+00],
               [3.00447079e-01, 3.87202330e-02, 0.00000000e+00],
               [3.11899717e-01, 4.11295116e-02, 0.00000000e+00],
               [3.23352355e-01, 4.35387902e-02, 0.00000000e+00],
               [3.36149249e-01, 4.64923760e-02, 0.00000000e+00],
               [3.49819910e-01, 4.97997613e-02, 0.00000000e+00],
               [3.63490571e-01, 5.31071466e-02, 0.00000000e+00],
               [3.77161232e-01, 5.64145319e-02, 0.00000000e+00],
               [3.90831894e-01, 5.97219172e-02, 0.00000000e+00],
               [4.04905270e-01, 6.33547279e-02, 0.00000000e+00],
               [4.20027945e-01, 6.78354525e-02, 0.00000000e+00],
               [4.35150619e-01, 7.23161770e-02, 0.00000000e+00],
               [4.50273293e-01, 7.67969016e-02, 0.00000000e+00],
               [4.65395968e-01, 8.12776261e-02, 0.00000000e+00],
               [4.80491754e-01, 8.58174413e-02, 0.00000000e+00],
               [4.94910505e-01, 9.18451595e-02, 0.00000000e+00],
               [5.09329255e-01, 9.78728776e-02, 0.00000000e+00],
               [5.23748005e-01, 1.03900596e-01, 0.00000000e+00],
               [5.38166755e-01, 1.09928314e-01, 0.00000000e+00],
               [5.52585506e-01, 1.15956032e-01, 0.00000000e+00],
               [5.67615464e-01, 1.23568964e-01, 9.47898839e-07],
               [5.82723782e-01, 1.31385129e-01, 2.01732317e-06],
               [5.97832099e-01, 1.39201294e-01, 3.08674750e-06],
               [6.12940417e-01, 1.47017459e-01, 4.15617183e-06],
               [6.28048735e-01, 1.54833624e-01, 5.22559616e-06],
               [6.43098813e-01, 1.64307246e-01, 5.84877257e-06],
               [6.58136078e-01, 1.74145478e-01, 6.37378263e-06],
               [6.73173344e-01, 1.83983711e-01, 6.89879268e-06],
               [6.88210609e-01, 1.93821943e-01, 7.42380273e-06],
               [7.03247875e-01, 2.03660175e-01, 7.94881278e-06],
               [7.17546471e-01, 2.15436756e-01, 8.72244917e-06],
               [7.31700230e-01, 2.27593405e-01, 9.54483582e-06],
               [7.45853990e-01, 2.39750055e-01, 1.03672225e-05],
               [7.60007749e-01, 2.51906704e-01, 1.11896091e-05],
               [7.74161508e-01, 2.64063354e-01, 1.20119958e-05],
               [7.86497696e-01, 2.78333181e-01, 1.32818969e-05],
               [7.98704366e-01, 2.92753591e-01, 1.45836873e-05],
               [8.10911036e-01, 3.07174002e-01, 1.58854778e-05],
               [8.23117706e-01, 3.21594412e-01, 1.71872683e-05],
               [8.35186518e-01, 3.36208819e-01, 1.85747438e-05],
               [8.46139602e-01, 3.52393309e-01, 2.06556971e-05],
               [8.57092687e-01, 3.68577799e-01, 2.27366504e-05],
               [8.68045771e-01, 3.84762289e-01, 2.48176037e-05],
               [8.78998855e-01, 4.00946779e-01, 2.68985570e-05],
               [8.89215651e-01, 4.17579320e-01, 2.94434547e-05],
               [8.98143940e-01, 4.34995949e-01, 3.28002551e-05],
               [9.07072229e-01, 4.52412578e-01, 3.61570554e-05],
               [9.16000518e-01, 4.69829208e-01, 3.95138558e-05],
               [9.24928807e-01, 4.87245837e-01, 4.28706562e-05],
               [9.31880728e-01, 5.04651340e-01, 4.76834190e-05],
               [9.37955635e-01, 5.22051906e-01, 5.31422653e-05],
               [9.44030542e-01, 5.39452472e-01, 5.86011115e-05],
               [9.50105449e-01, 5.56853038e-01, 6.40599578e-05],
               [9.55892875e-01, 5.74294183e-01, 6.98501401e-05],
               [9.58948160e-01, 5.92120984e-01, 7.87892608e-05],
               [9.62003444e-01, 6.09947784e-01, 8.77283815e-05],
               [9.65058728e-01, 6.27774585e-01, 9.66675021e-05],
               [9.68114013e-01, 6.45601386e-01, 1.05606623e-04],
               [9.72354205e-01, 6.64398627e-01, 1.17838668e-04],
               [9.77489728e-01, 6.83929146e-01, 1.32558884e-04],
               [9.82625251e-01, 7.03459664e-01, 1.47279100e-04],
               [9.87760774e-01, 7.22990182e-01, 1.61999316e-04],
               [9.92509943e-01, 7.42196432e-01, 1.77817359e-04],
               [9.94261297e-01, 7.58886608e-01, 2.02153721e-04],
               [9.96012651e-01, 7.75576783e-01, 2.26490084e-04],
               [9.97764004e-01, 7.92266959e-01, 2.50826447e-04],
               [9.99515358e-01, 8.08957134e-01, 2.75162810e-04],
               [9.99065878e-01, 8.23559025e-01, 3.11123629e-04],
               [9.97791085e-01, 8.37377810e-01, 3.51443619e-04],
               [9.96516292e-01, 8.51196595e-01, 3.91763610e-04],
               [9.95241498e-01, 8.65015380e-01, 4.32083600e-04],
               [9.93237351e-01, 8.77470091e-01, 4.83190079e-04],
               [9.90172100e-01, 8.87940271e-01, 5.49989336e-04],
               [9.87106849e-01, 8.98410452e-01, 6.16788594e-04],
               [9.84041597e-01, 9.08880632e-01, 6.83587852e-04],
               [9.80871738e-01, 9.19166847e-01, 7.57052109e-04],
               [9.77122292e-01, 9.28433790e-01, 8.67444063e-04],
               [9.73372847e-01, 9.37700733e-01, 9.77836018e-04],
               [9.69623402e-01, 9.46967676e-01, 1.08822797e-03],
               [9.65873957e-01, 9.56234619e-01, 1.19861993e-03],
               [9.59779661e-01, 9.61388103e-01, 1.37907137e-03],
               [9.53593770e-01, 9.66380906e-01, 1.56225950e-03],
               [9.47407879e-01, 9.71373709e-01, 1.74544764e-03],
               [9.41221987e-01, 9.76366512e-01, 1.92863578e-03],
               [9.35862130e-01, 9.81296800e-01, 2.20723373e-03],
               [9.30666137e-01, 9.86214687e-01, 2.50475852e-03],
               [9.25470143e-01, 9.91132574e-01, 2.80228330e-03],
               [9.20274150e-01, 9.96050461e-01, 3.09980808e-03],
               [9.11776049e-01, 9.96814428e-01, 3.53678623e-03],
               [9.02278626e-01, 9.96321289e-01, 4.01596737e-03],
               [8.92781202e-01, 9.95828150e-01, 4.49514851e-03],
               [8.83283779e-01, 9.95335011e-01, 4.97432965e-03],
               [8.70357183e-01, 9.90138809e-01, 5.66803016e-03],
               [8.56351813e-01, 9.83463085e-01, 6.42921569e-03],
               [8.42346443e-01, 9.76787360e-01, 7.19040121e-03],
               [8.28341073e-01, 9.70111636e-01, 7.95158673e-03],
               [8.14214130e-01, 9.61934330e-01, 9.03521277e-03],
               [8.00059079e-01, 9.53409844e-01, 1.01933900e-02],
               [7.85904028e-01, 9.44885358e-01, 1.13515672e-02],
               [7.71748976e-01, 9.36360872e-01, 1.25097445e-02],
               [7.54803293e-01, 9.23647801e-01, 1.42317318e-02],
               [7.37618069e-01, 9.10575194e-01, 1.60021149e-02],
               [7.20432846e-01, 8.97502586e-01, 1.77724979e-02],
               [7.02994012e-01, 8.83987616e-01, 1.96135712e-02],
               [6.82848697e-01, 8.65751846e-01, 2.22090338e-02],
               [6.62703383e-01, 8.47516077e-01, 2.48044965e-02],
               [6.42558069e-01, 8.29280307e-01, 2.73999591e-02],
               [6.21021574e-01, 8.08629266e-01, 3.03177497e-02],
               [5.96317925e-01, 7.82479626e-01, 3.39693509e-02],
               [5.71614275e-01, 7.56329987e-01, 3.76209521e-02],
               [5.46910626e-01, 7.30180347e-01, 4.12725533e-02],
               [5.21885772e-01, 7.02842258e-01, 4.56468260e-02],
               [4.96626730e-01, 6.74637674e-01, 5.05479963e-02],
               [4.71367687e-01, 6.46433091e-01, 5.54491667e-02],
               [4.46108644e-01, 6.18228507e-01, 6.03503370e-02],
               [4.22732390e-01, 5.90585713e-01, 6.78261191e-02],
               [3.99556150e-01, 5.63002600e-01, 7.55754081e-02],
               [3.76379909e-01, 5.35419486e-01, 8.33246972e-02],
               [3.54150919e-01, 5.08679668e-01, 9.15660981e-02],
               [3.34345779e-01, 4.84097693e-01, 1.01066727e-01],
               [3.14540639e-01, 4.59515718e-01, 1.10567355e-01],
               [2.94735499e-01, 4.34933743e-01, 1.20067983e-01],
               [2.77694238e-01, 4.13550010e-01, 1.30415519e-01],
               [2.61791044e-01, 3.93483202e-01, 1.41111781e-01],
               [2.45887851e-01, 3.73416393e-01, 1.51808043e-01],
               [2.30724201e-01, 3.54217289e-01, 1.63258477e-01],
               [2.18819558e-01, 3.38841970e-01, 1.78032377e-01],
               [2.06914916e-01, 3.23466651e-01, 1.92806277e-01],
               [1.95010274e-01, 3.08091332e-01, 2.07580177e-01],
               [1.85839746e-01, 2.96264763e-01, 2.28113511e-01],
               [1.77786849e-01, 2.85888824e-01, 2.51001139e-01],
               [1.69733951e-01, 2.75512886e-01, 2.73888768e-01],
               [1.61966598e-01, 2.65368567e-01, 2.98662491e-01],
               [1.54926257e-01, 2.55813966e-01, 3.28238311e-01],
               [1.47885916e-01, 2.46259366e-01, 3.57814131e-01],
               [1.40845574e-01, 2.36704765e-01, 3.87389952e-01],
               [1.34384065e-01, 2.27560262e-01, 4.24364167e-01],
               [1.27986519e-01, 2.18461077e-01, 4.62155940e-01],
               [1.21588973e-01, 2.09361892e-01, 4.99947714e-01],
               [1.15488374e-01, 2.00339219e-01, 5.38691241e-01],
               [1.09616987e-01, 1.91375605e-01, 5.78169419e-01],
               [1.03745600e-01, 1.82411992e-01, 6.17647598e-01],
               [9.78980944e-02, 1.73260478e-01, 6.54076290e-01],
               [9.21142738e-02, 1.63607897e-01, 6.82373018e-01],
               [8.63304532e-02, 1.53955317e-01, 7.10669746e-01],
               [8.05663926e-02, 1.44323302e-01, 7.38641004e-01],
               [7.55830929e-02, 1.35503863e-01, 7.53752198e-01],
               [7.05997933e-02, 1.26684424e-01, 7.68863392e-01],
               [6.56164936e-02, 1.17864985e-01, 7.83974586e-01],
               [6.22882135e-02, 1.11589324e-01, 8.05751119e-01],
               [5.93247626e-02, 1.05874409e-01, 8.28996946e-01],
               [5.63613116e-02, 1.00159494e-01, 8.52242773e-01],
               [5.41909435e-02, 9.58527781e-02, 8.80230772e-01],
               [5.24365127e-02, 9.22846018e-02, 9.10705835e-01],
               [5.06820820e-02, 8.87164255e-02, 9.41180899e-01],
               [4.90109904e-02, 8.51181293e-02, 9.61647451e-01],
               [4.74127283e-02, 8.14935115e-02, 9.73367629e-01],
               [4.58144663e-02, 7.78688937e-02, 9.85087806e-01],
               [4.42430778e-02, 7.42331402e-02, 9.91441525e-01],
               [4.27043214e-02, 7.05838651e-02, 9.91278831e-01],
               [4.11655651e-02, 6.69345899e-02, 9.91116137e-01],
               [3.94185919e-02, 6.30133732e-02, 9.79110351e-01],
               [3.73708609e-02, 5.86993522e-02, 9.49997875e-01],
               [3.53231300e-02, 5.43853312e-02, 9.20885399e-01],
               [3.32966294e-02, 5.01302108e-02, 8.89766895e-01],
               [3.13012767e-02, 4.59615062e-02, 8.55705260e-01],
               [2.93059241e-02, 4.17928016e-02, 8.21643626e-01],
               [2.73987252e-02, 3.79727389e-02, 7.83328843e-01],
               [2.56039108e-02, 3.45971493e-02, 7.39591852e-01],
               [2.38090964e-02, 3.12215596e-02, 6.95854862e-01],
               [2.21391780e-02, 2.81738767e-02, 6.51344383e-01],
               [2.05887070e-02, 2.54397958e-02, 6.06094160e-01],
               [1.90382361e-02, 2.27057149e-02, 5.60843937e-01],
               [1.73497807e-02, 2.01171617e-02, 5.08432174e-01],
               [1.55765090e-02, 1.76180613e-02, 4.51618362e-01],
               [1.38032374e-02, 1.51189609e-02, 3.94804551e-01],
               [1.21218105e-02, 1.29757867e-02, 3.41210630e-01],
               [1.04688473e-02, 1.09429181e-02, 2.88614589e-01],
               [8.81588406e-03, 8.91004948e-03, 2.36018548e-01],
               [7.40566041e-03, 7.40847074e-03, 1.95596905e-01],
               [6.01017453e-03, 5.93914888e-03, 1.55914421e-01],
               [4.69529289e-03, 4.56170905e-03, 1.18703848e-01],
               [3.81412524e-03, 3.67866644e-03, 9.47940869e-02],
               [2.93295759e-03, 2.79562384e-03, 7.08843254e-02],
               [2.20646541e-03, 2.07474126e-03, 5.17641069e-02],
               [1.70753686e-03, 1.59243385e-03, 3.96904214e-02],
               [1.20860831e-03, 1.11012644e-03, 2.76167359e-02],
               [8.89261197e-04, 8.07902163e-04, 2.01786925e-02],
               [6.52132098e-04, 5.88125582e-04, 1.48629913e-02],
               [4.15003000e-04, 3.68349000e-04, 9.54729000e-03]]
        rgb_high = np.array(rgb_high)
320 321 322
        # if spacing != None:
        #     spacing = np.arange(0, 1, 1 / energy_bins)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
323
        rgb = zoom(rgb_high.T,(1,energy_bins/len(rgb_high.T[0])))
324 325 326


        return np.clip(rgb,1e-15, rgb.max())
327 328 329 330 331 332 333
    rgb = _eye_sensitivity(spectral_cube.shape[-1])
    rgb_data = np.tensordot(spectral_cube, rgb, axes=[-1, -1])
    rgb_data = np.log(rgb_data)
    rgb_data -= rgb_data.min()
    rgb_data /= rgb_data.max()
    return rgb_data

Martin Reinecke's avatar
Martin Reinecke committed
334 335
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
336 337
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
338 339
    return idx

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
340

Martin Reinecke's avatar
Martin Reinecke committed
341
def _makeplot(name):
342
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
343
    if dobj.rank != 0:
344
        plt.close()
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
345
        return
Martin Reinecke's avatar
Martin Reinecke committed
346 347
    if name is None:
        plt.show()
348
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
349 350
        return
    extension = os.path.splitext(name)[1]
351
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
352 353 354 355 356
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
357

Martin Reinecke's avatar
Martin Reinecke committed
358
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
359
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
360
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
361 362 363 364
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
365 366
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
367

Martin Reinecke's avatar
Martin Reinecke committed
368 369 370 371 372 373 374 375 376
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
423 424 425

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
426
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
427 428
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
429
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
430

Martin Reinecke's avatar
Martin Reinecke committed
431

432
def _plot1D(f, ax, **kwargs):
433
    import matplotlib.pyplot as plt
434

435 436 437 438 439
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
440 441
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
442 443 444
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
445
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
446

clienhar's avatar
clienhar committed
447
    label = kwargs.pop("label", None)
448
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
449
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
450

Martin Reinecke's avatar
Martin Reinecke committed
451
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
452
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
453
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
454

clienhar's avatar
clienhar committed
455
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
456
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
457
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
458

clienhar's avatar
clienhar committed
459 460 461
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
462

Martin Reinecke's avatar
Martin Reinecke committed
463
    if isinstance(dom, RGSpace):
464 465
        plt.xscale(kwargs.pop("xscale", "linear"))
        plt.yscale(kwargs.pop("yscale", "linear"))
466 467 468 469 470 471 472 473 474 475 476
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
477 478 479 480 481 482 483 484 485 486 487 488 489 490
    elif isinstance(dom, LogRGSpace):
        #plt.xscale(kwargs.pop("xscale", "log"))
        #plt.yscale(kwargs.pop("yscale", "log"))
        npoints = dom.shape[0]
        xcoord = dom.t_0 + np.arange(npoints-1)*dom.bindistances[0]
        print(xcoord)
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()[1:]
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
491
    elif isinstance(dom, PowerSpace):
492 493
        plt.xscale(kwargs.pop("xscale", "log"))
        plt.yscale(kwargs.pop("yscale", "log"))
Philipp Arras's avatar
Philipp Arras committed
494
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
495
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
496
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
497 498
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
499
        _limit_xy(**kwargs)
500 501
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
502
        return
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
    if len(dom) == 2:
        if (not isinstance(dom[1], RGSpace)) or len(dom[1].shape) != 1:
            raise TypeError("need 1D RGSpace as second domain")
        rgb = _rgb_data(f.to_global_data())
        have_rgb = True

    label = kwargs.pop("label", None)

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    dom = dom[0]
    if not have_rgb:
        cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm)
        else:
            im = ax.imshow(
                f.to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm)
            plt.colorbar(im)
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
548
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
549 550 551
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
552 553 554
        if have_rgb:
            res = np.full(shape=res.shape+(3,), fill_value=1., dtype=np.float64)

Martin Reinecke's avatar
Martin Reinecke committed
555 556 557 558
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
559 560 561 562 563
            base = pyHealpix.Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
                res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
564 565 566 567 568 569
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
570 571 572 573
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
                res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
574
        plt.axis('off')
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
            plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                       cmap=cmap, origin="lower")
            plt.colorbar(orientation="horizontal")
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
    if isinstance(f, Field):
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
    if not isinstance(f[0], Field):
            raise TypeError("incorrect data type")
    dom1 = f[0].domain
    if (len(dom1)==1 and
        (isinstance(dom1[0],PowerSpace) or
597 598
            (isinstance(dom1[0], (RGSpace, LogRGSpace)) and
             len(dom1[0].shape) == 1))):
599 600 601 602 603 604
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
605 606
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
607

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
        After doing one or more calls `plot()`, one also needs to call
        `plot_finish()` to output the result.

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
624
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
625
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo  
Martin Reinecke committed
626
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
627
            If it is a list, all list members must be Fields defined over the
628 629
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
Philipp Arras's avatar
Philipp Arras committed
630
            title of the plot.
631
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
632
            Label for the x axis.
633
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
634
            Label for the y axis.
635
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
636
            Limits for the values to plot.
637
        colormap: string
Philipp Arras's avatar
Philipp Arras committed
638
            Color map to use for the plot (if it is a 2D plot).
639
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
640
            Line width.
641
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
642
            Annotation string.
643 644 645 646 647 648 649 650 651 652 653 654
        alpha: float or list of floats
            transparency value
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
655 656 657 658 659 660 661 662
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
663
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
664
            Supported extensions: .png and .pdf. Default: None.
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
        nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
        ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))