plot.py 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18 19
import os

20 21
import numpy as np

Martin Reinecke's avatar
fix  
Martin Reinecke committed
22 23 24 25 26
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
27
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
fix  
Martin Reinecke committed
28
from .field import Field
29

Martin Reinecke's avatar
Martin Reinecke committed
30 31 32 33 34 35 36 37
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
38
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
39

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41 42 43
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
44
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
45
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
47
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
48 49 50 51 52 53 54 55 56

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
57

58 59

def _rgb_data(spectral_cube):
60 61
    def _eye_sensitivity(energy_bins, spacing=None):
        from scipy.ndimage import zoom
Jakob Knollmueller's avatar
Jakob Knollmueller committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        rgb_high=[[9.85234460e-03, 6.13406271e-04, 0.00000000e+00],
                [1.04118690e-02, 6.49048870e-04, 0.00000000e+00],
               [1.09713934e-02, 6.84691469e-04, 0.00000000e+00],
               [1.15309178e-02, 7.20334068e-04, 0.00000000e+00],
               [1.20904422e-02, 7.55976668e-04, 0.00000000e+00],
               [1.29039276e-02, 8.08680908e-04, 0.00000000e+00],
               [1.37595706e-02, 8.64217381e-04, 0.00000000e+00],
               [1.46152136e-02, 9.19753853e-04, 0.00000000e+00],
               [1.54708566e-02, 9.75290326e-04, 0.00000000e+00],
               [1.63264996e-02, 1.03082680e-03, 0.00000000e+00],
               [1.71821426e-02, 1.08636327e-03, 0.00000000e+00],
               [1.81667722e-02, 1.15137696e-03, 0.00000000e+00],
               [1.93698228e-02, 1.23243904e-03, 0.00000000e+00],
               [2.05728734e-02, 1.31350111e-03, 0.00000000e+00],
               [2.17759241e-02, 1.39456318e-03, 0.00000000e+00],
               [2.29789747e-02, 1.47562526e-03, 0.00000000e+00],
               [2.41820254e-02, 1.55668733e-03, 0.00000000e+00],
               [2.53874406e-02, 1.63793709e-03, 0.00000000e+00],
               [2.70586835e-02, 1.75616085e-03, 0.00000000e+00],
               [2.87299264e-02, 1.87438460e-03, 0.00000000e+00],
               [3.04011692e-02, 1.99260836e-03, 0.00000000e+00],
               [3.20724121e-02, 2.11083211e-03, 0.00000000e+00],
               [3.37436550e-02, 2.22905587e-03, 0.00000000e+00],
               [3.54148979e-02, 2.34727962e-03, 0.00000000e+00],
               [3.75526858e-02, 2.50677171e-03, 0.00000000e+00],
               [3.98413542e-02, 2.67960994e-03, 0.00000000e+00],
               [4.21300226e-02, 2.85244818e-03, 0.00000000e+00],
               [4.44186909e-02, 3.02528642e-03, 0.00000000e+00],
               [4.67073593e-02, 3.19812466e-03, 0.00000000e+00],
               [4.89960277e-02, 3.37096290e-03, 0.00000000e+00],
               [5.17840545e-02, 3.59459245e-03, 0.00000000e+00],
               [5.48783544e-02, 3.84937399e-03, 0.00000000e+00],
               [5.79726543e-02, 4.10415554e-03, 0.00000000e+00],
               [6.10669543e-02, 4.35893709e-03, 0.00000000e+00],
               [6.41612542e-02, 4.61371864e-03, 0.00000000e+00],
               [6.72555541e-02, 4.86850018e-03, 0.00000000e+00],
               [7.09715657e-02, 5.20598062e-03, 0.00000000e+00],
               [7.51114716e-02, 5.59984666e-03, 0.00000000e+00],
               [7.92513775e-02, 5.99371269e-03, 0.00000000e+00],
               [8.33912835e-02, 6.38757873e-03, 0.00000000e+00],
               [8.75311894e-02, 6.78144477e-03, 0.00000000e+00],
               [9.16710953e-02, 7.17531081e-03, 0.00000000e+00],
               [9.67048710e-02, 7.69960083e-03, 0.00000000e+00],
               [1.02165218e-01, 8.28613156e-03, 0.00000000e+00],
               [1.07625564e-01, 8.87266229e-03, 0.00000000e+00],
               [1.13085911e-01, 9.45919302e-03, 0.00000000e+00],
               [1.18546257e-01, 1.00457237e-02, 0.00000000e+00],
               [1.24006604e-01, 1.06322545e-02, 0.00000000e+00],
               [1.30860134e-01, 1.14285362e-02, 0.00000000e+00],
               [1.37932889e-01, 1.22578234e-02, 0.00000000e+00],
               [1.45005644e-01, 1.30871106e-02, 0.00000000e+00],
               [1.52078399e-01, 1.39163978e-02, 0.00000000e+00],
               [1.59151155e-01, 1.47456850e-02, 0.00000000e+00],
               [1.66454559e-01, 1.56214122e-02, 0.00000000e+00],
               [1.75033740e-01, 1.67540109e-02, 0.00000000e+00],
               [1.83612920e-01, 1.78866096e-02, 0.00000000e+00],
               [1.92192101e-01, 1.90192083e-02, 0.00000000e+00],
               [2.00771282e-01, 2.01518070e-02, 0.00000000e+00],
               [2.09350463e-01, 2.12844057e-02, 0.00000000e+00],
               [2.18438958e-01, 2.27487266e-02, 0.00000000e+00],
               [2.27958699e-01, 2.44939217e-02, 0.00000000e+00],
               [2.37478439e-01, 2.62391168e-02, 0.00000000e+00],
               [2.46998180e-01, 2.79843119e-02, 0.00000000e+00],
               [2.56517920e-01, 2.97295070e-02, 0.00000000e+00],
               [2.66089164e-01, 3.14923971e-02, 0.00000000e+00],
               [2.77541802e-01, 3.39016757e-02, 0.00000000e+00],
               [2.88994440e-01, 3.63109543e-02, 0.00000000e+00],
               [3.00447079e-01, 3.87202330e-02, 0.00000000e+00],
               [3.11899717e-01, 4.11295116e-02, 0.00000000e+00],
               [3.23352355e-01, 4.35387902e-02, 0.00000000e+00],
               [3.36149249e-01, 4.64923760e-02, 0.00000000e+00],
               [3.49819910e-01, 4.97997613e-02, 0.00000000e+00],
               [3.63490571e-01, 5.31071466e-02, 0.00000000e+00],
               [3.77161232e-01, 5.64145319e-02, 0.00000000e+00],
               [3.90831894e-01, 5.97219172e-02, 0.00000000e+00],
               [4.04905270e-01, 6.33547279e-02, 0.00000000e+00],
               [4.20027945e-01, 6.78354525e-02, 0.00000000e+00],
               [4.35150619e-01, 7.23161770e-02, 0.00000000e+00],
               [4.50273293e-01, 7.67969016e-02, 0.00000000e+00],
               [4.65395968e-01, 8.12776261e-02, 0.00000000e+00],
               [4.80491754e-01, 8.58174413e-02, 0.00000000e+00],
               [4.94910505e-01, 9.18451595e-02, 0.00000000e+00],
               [5.09329255e-01, 9.78728776e-02, 0.00000000e+00],
               [5.23748005e-01, 1.03900596e-01, 0.00000000e+00],
               [5.38166755e-01, 1.09928314e-01, 0.00000000e+00],
               [5.52585506e-01, 1.15956032e-01, 0.00000000e+00],
               [5.67615464e-01, 1.23568964e-01, 9.47898839e-07],
               [5.82723782e-01, 1.31385129e-01, 2.01732317e-06],
               [5.97832099e-01, 1.39201294e-01, 3.08674750e-06],
               [6.12940417e-01, 1.47017459e-01, 4.15617183e-06],
               [6.28048735e-01, 1.54833624e-01, 5.22559616e-06],
               [6.43098813e-01, 1.64307246e-01, 5.84877257e-06],
               [6.58136078e-01, 1.74145478e-01, 6.37378263e-06],
               [6.73173344e-01, 1.83983711e-01, 6.89879268e-06],
               [6.88210609e-01, 1.93821943e-01, 7.42380273e-06],
               [7.03247875e-01, 2.03660175e-01, 7.94881278e-06],
               [7.17546471e-01, 2.15436756e-01, 8.72244917e-06],
               [7.31700230e-01, 2.27593405e-01, 9.54483582e-06],
               [7.45853990e-01, 2.39750055e-01, 1.03672225e-05],
               [7.60007749e-01, 2.51906704e-01, 1.11896091e-05],
               [7.74161508e-01, 2.64063354e-01, 1.20119958e-05],
               [7.86497696e-01, 2.78333181e-01, 1.32818969e-05],
               [7.98704366e-01, 2.92753591e-01, 1.45836873e-05],
               [8.10911036e-01, 3.07174002e-01, 1.58854778e-05],
               [8.23117706e-01, 3.21594412e-01, 1.71872683e-05],
               [8.35186518e-01, 3.36208819e-01, 1.85747438e-05],
               [8.46139602e-01, 3.52393309e-01, 2.06556971e-05],
               [8.57092687e-01, 3.68577799e-01, 2.27366504e-05],
               [8.68045771e-01, 3.84762289e-01, 2.48176037e-05],
               [8.78998855e-01, 4.00946779e-01, 2.68985570e-05],
               [8.89215651e-01, 4.17579320e-01, 2.94434547e-05],
               [8.98143940e-01, 4.34995949e-01, 3.28002551e-05],
               [9.07072229e-01, 4.52412578e-01, 3.61570554e-05],
               [9.16000518e-01, 4.69829208e-01, 3.95138558e-05],
               [9.24928807e-01, 4.87245837e-01, 4.28706562e-05],
               [9.31880728e-01, 5.04651340e-01, 4.76834190e-05],
               [9.37955635e-01, 5.22051906e-01, 5.31422653e-05],
               [9.44030542e-01, 5.39452472e-01, 5.86011115e-05],
               [9.50105449e-01, 5.56853038e-01, 6.40599578e-05],
               [9.55892875e-01, 5.74294183e-01, 6.98501401e-05],
               [9.58948160e-01, 5.92120984e-01, 7.87892608e-05],
               [9.62003444e-01, 6.09947784e-01, 8.77283815e-05],
               [9.65058728e-01, 6.27774585e-01, 9.66675021e-05],
               [9.68114013e-01, 6.45601386e-01, 1.05606623e-04],
               [9.72354205e-01, 6.64398627e-01, 1.17838668e-04],
               [9.77489728e-01, 6.83929146e-01, 1.32558884e-04],
               [9.82625251e-01, 7.03459664e-01, 1.47279100e-04],
               [9.87760774e-01, 7.22990182e-01, 1.61999316e-04],
               [9.92509943e-01, 7.42196432e-01, 1.77817359e-04],
               [9.94261297e-01, 7.58886608e-01, 2.02153721e-04],
               [9.96012651e-01, 7.75576783e-01, 2.26490084e-04],
               [9.97764004e-01, 7.92266959e-01, 2.50826447e-04],
               [9.99515358e-01, 8.08957134e-01, 2.75162810e-04],
               [9.99065878e-01, 8.23559025e-01, 3.11123629e-04],
               [9.97791085e-01, 8.37377810e-01, 3.51443619e-04],
               [9.96516292e-01, 8.51196595e-01, 3.91763610e-04],
               [9.95241498e-01, 8.65015380e-01, 4.32083600e-04],
               [9.93237351e-01, 8.77470091e-01, 4.83190079e-04],
               [9.90172100e-01, 8.87940271e-01, 5.49989336e-04],
               [9.87106849e-01, 8.98410452e-01, 6.16788594e-04],
               [9.84041597e-01, 9.08880632e-01, 6.83587852e-04],
               [9.80871738e-01, 9.19166847e-01, 7.57052109e-04],
               [9.77122292e-01, 9.28433790e-01, 8.67444063e-04],
               [9.73372847e-01, 9.37700733e-01, 9.77836018e-04],
               [9.69623402e-01, 9.46967676e-01, 1.08822797e-03],
               [9.65873957e-01, 9.56234619e-01, 1.19861993e-03],
               [9.59779661e-01, 9.61388103e-01, 1.37907137e-03],
               [9.53593770e-01, 9.66380906e-01, 1.56225950e-03],
               [9.47407879e-01, 9.71373709e-01, 1.74544764e-03],
               [9.41221987e-01, 9.76366512e-01, 1.92863578e-03],
               [9.35862130e-01, 9.81296800e-01, 2.20723373e-03],
               [9.30666137e-01, 9.86214687e-01, 2.50475852e-03],
               [9.25470143e-01, 9.91132574e-01, 2.80228330e-03],
               [9.20274150e-01, 9.96050461e-01, 3.09980808e-03],
               [9.11776049e-01, 9.96814428e-01, 3.53678623e-03],
               [9.02278626e-01, 9.96321289e-01, 4.01596737e-03],
               [8.92781202e-01, 9.95828150e-01, 4.49514851e-03],
               [8.83283779e-01, 9.95335011e-01, 4.97432965e-03],
               [8.70357183e-01, 9.90138809e-01, 5.66803016e-03],
               [8.56351813e-01, 9.83463085e-01, 6.42921569e-03],
               [8.42346443e-01, 9.76787360e-01, 7.19040121e-03],
               [8.28341073e-01, 9.70111636e-01, 7.95158673e-03],
               [8.14214130e-01, 9.61934330e-01, 9.03521277e-03],
               [8.00059079e-01, 9.53409844e-01, 1.01933900e-02],
               [7.85904028e-01, 9.44885358e-01, 1.13515672e-02],
               [7.71748976e-01, 9.36360872e-01, 1.25097445e-02],
               [7.54803293e-01, 9.23647801e-01, 1.42317318e-02],
               [7.37618069e-01, 9.10575194e-01, 1.60021149e-02],
               [7.20432846e-01, 8.97502586e-01, 1.77724979e-02],
               [7.02994012e-01, 8.83987616e-01, 1.96135712e-02],
               [6.82848697e-01, 8.65751846e-01, 2.22090338e-02],
               [6.62703383e-01, 8.47516077e-01, 2.48044965e-02],
               [6.42558069e-01, 8.29280307e-01, 2.73999591e-02],
               [6.21021574e-01, 8.08629266e-01, 3.03177497e-02],
               [5.96317925e-01, 7.82479626e-01, 3.39693509e-02],
               [5.71614275e-01, 7.56329987e-01, 3.76209521e-02],
               [5.46910626e-01, 7.30180347e-01, 4.12725533e-02],
               [5.21885772e-01, 7.02842258e-01, 4.56468260e-02],
               [4.96626730e-01, 6.74637674e-01, 5.05479963e-02],
               [4.71367687e-01, 6.46433091e-01, 5.54491667e-02],
               [4.46108644e-01, 6.18228507e-01, 6.03503370e-02],
               [4.22732390e-01, 5.90585713e-01, 6.78261191e-02],
               [3.99556150e-01, 5.63002600e-01, 7.55754081e-02],
               [3.76379909e-01, 5.35419486e-01, 8.33246972e-02],
               [3.54150919e-01, 5.08679668e-01, 9.15660981e-02],
               [3.34345779e-01, 4.84097693e-01, 1.01066727e-01],
               [3.14540639e-01, 4.59515718e-01, 1.10567355e-01],
               [2.94735499e-01, 4.34933743e-01, 1.20067983e-01],
               [2.77694238e-01, 4.13550010e-01, 1.30415519e-01],
               [2.61791044e-01, 3.93483202e-01, 1.41111781e-01],
               [2.45887851e-01, 3.73416393e-01, 1.51808043e-01],
               [2.30724201e-01, 3.54217289e-01, 1.63258477e-01],
               [2.18819558e-01, 3.38841970e-01, 1.78032377e-01],
               [2.06914916e-01, 3.23466651e-01, 1.92806277e-01],
               [1.95010274e-01, 3.08091332e-01, 2.07580177e-01],
               [1.85839746e-01, 2.96264763e-01, 2.28113511e-01],
               [1.77786849e-01, 2.85888824e-01, 2.51001139e-01],
               [1.69733951e-01, 2.75512886e-01, 2.73888768e-01],
               [1.61966598e-01, 2.65368567e-01, 2.98662491e-01],
               [1.54926257e-01, 2.55813966e-01, 3.28238311e-01],
               [1.47885916e-01, 2.46259366e-01, 3.57814131e-01],
               [1.40845574e-01, 2.36704765e-01, 3.87389952e-01],
               [1.34384065e-01, 2.27560262e-01, 4.24364167e-01],
               [1.27986519e-01, 2.18461077e-01, 4.62155940e-01],
               [1.21588973e-01, 2.09361892e-01, 4.99947714e-01],
               [1.15488374e-01, 2.00339219e-01, 5.38691241e-01],
               [1.09616987e-01, 1.91375605e-01, 5.78169419e-01],
               [1.03745600e-01, 1.82411992e-01, 6.17647598e-01],
               [9.78980944e-02, 1.73260478e-01, 6.54076290e-01],
               [9.21142738e-02, 1.63607897e-01, 6.82373018e-01],
               [8.63304532e-02, 1.53955317e-01, 7.10669746e-01],
               [8.05663926e-02, 1.44323302e-01, 7.38641004e-01],
               [7.55830929e-02, 1.35503863e-01, 7.53752198e-01],
               [7.05997933e-02, 1.26684424e-01, 7.68863392e-01],
               [6.56164936e-02, 1.17864985e-01, 7.83974586e-01],
               [6.22882135e-02, 1.11589324e-01, 8.05751119e-01],
               [5.93247626e-02, 1.05874409e-01, 8.28996946e-01],
               [5.63613116e-02, 1.00159494e-01, 8.52242773e-01],
               [5.41909435e-02, 9.58527781e-02, 8.80230772e-01],
               [5.24365127e-02, 9.22846018e-02, 9.10705835e-01],
               [5.06820820e-02, 8.87164255e-02, 9.41180899e-01],
               [4.90109904e-02, 8.51181293e-02, 9.61647451e-01],
               [4.74127283e-02, 8.14935115e-02, 9.73367629e-01],
               [4.58144663e-02, 7.78688937e-02, 9.85087806e-01],
               [4.42430778e-02, 7.42331402e-02, 9.91441525e-01],
               [4.27043214e-02, 7.05838651e-02, 9.91278831e-01],
               [4.11655651e-02, 6.69345899e-02, 9.91116137e-01],
               [3.94185919e-02, 6.30133732e-02, 9.79110351e-01],
               [3.73708609e-02, 5.86993522e-02, 9.49997875e-01],
               [3.53231300e-02, 5.43853312e-02, 9.20885399e-01],
               [3.32966294e-02, 5.01302108e-02, 8.89766895e-01],
               [3.13012767e-02, 4.59615062e-02, 8.55705260e-01],
               [2.93059241e-02, 4.17928016e-02, 8.21643626e-01],
               [2.73987252e-02, 3.79727389e-02, 7.83328843e-01],
               [2.56039108e-02, 3.45971493e-02, 7.39591852e-01],
               [2.38090964e-02, 3.12215596e-02, 6.95854862e-01],
               [2.21391780e-02, 2.81738767e-02, 6.51344383e-01],
               [2.05887070e-02, 2.54397958e-02, 6.06094160e-01],
               [1.90382361e-02, 2.27057149e-02, 5.60843937e-01],
               [1.73497807e-02, 2.01171617e-02, 5.08432174e-01],
               [1.55765090e-02, 1.76180613e-02, 4.51618362e-01],
               [1.38032374e-02, 1.51189609e-02, 3.94804551e-01],
               [1.21218105e-02, 1.29757867e-02, 3.41210630e-01],
               [1.04688473e-02, 1.09429181e-02, 2.88614589e-01],
               [8.81588406e-03, 8.91004948e-03, 2.36018548e-01],
               [7.40566041e-03, 7.40847074e-03, 1.95596905e-01],
               [6.01017453e-03, 5.93914888e-03, 1.55914421e-01],
               [4.69529289e-03, 4.56170905e-03, 1.18703848e-01],
               [3.81412524e-03, 3.67866644e-03, 9.47940869e-02],
               [2.93295759e-03, 2.79562384e-03, 7.08843254e-02],
               [2.20646541e-03, 2.07474126e-03, 5.17641069e-02],
               [1.70753686e-03, 1.59243385e-03, 3.96904214e-02],
               [1.20860831e-03, 1.11012644e-03, 2.76167359e-02],
               [8.89261197e-04, 8.07902163e-04, 2.01786925e-02],
               [6.52132098e-04, 5.88125582e-04, 1.48629913e-02],
               [4.15003000e-04, 3.68349000e-04, 9.54729000e-03]]
        rgb_high = np.array(rgb_high)
319 320 321
        # if spacing != None:
        #     spacing = np.arange(0, 1, 1 / energy_bins)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
322
        rgb = zoom(rgb_high.T,(1,energy_bins/len(rgb_high.T[0])))
323 324 325


        return np.clip(rgb,1e-15, rgb.max())
326 327 328 329 330 331 332
    rgb = _eye_sensitivity(spectral_cube.shape[-1])
    rgb_data = np.tensordot(spectral_cube, rgb, axes=[-1, -1])
    rgb_data = np.log(rgb_data)
    rgb_data -= rgb_data.min()
    rgb_data /= rgb_data.max()
    return rgb_data

Martin Reinecke's avatar
Martin Reinecke committed
333 334
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
335 336
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
337 338
    return idx

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
339

Martin Reinecke's avatar
Martin Reinecke committed
340
def _makeplot(name):
341
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
342
    if dobj.rank != 0:
343
        plt.close()
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
344
        return
Martin Reinecke's avatar
Martin Reinecke committed
345 346
    if name is None:
        plt.show()
347
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
348 349
        return
    extension = os.path.splitext(name)[1]
350
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
351 352 353 354 355
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
356

Martin Reinecke's avatar
Martin Reinecke committed
357
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
358
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
359
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
360 361 362 363
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
364 365
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
366

Martin Reinecke's avatar
Martin Reinecke committed
367 368 369 370 371 372 373 374 375
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
422 423 424

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
425
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
426 427
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
428
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
429

Martin Reinecke's avatar
Martin Reinecke committed
430

431
def _plot1D(f, ax, **kwargs):
432
    import matplotlib.pyplot as plt
433

434 435 436 437 438
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
439 440
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
441 442 443
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
444
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
445

clienhar's avatar
clienhar committed
446
    label = kwargs.pop("label", None)
447
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
448
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
449

Martin Reinecke's avatar
Martin Reinecke committed
450
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
451
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
452
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
453

clienhar's avatar
clienhar committed
454
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
455
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
456
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
457

clienhar's avatar
clienhar committed
458 459 460
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
461

Martin Reinecke's avatar
Martin Reinecke committed
462
    if isinstance(dom, RGSpace):
463 464 465 466 467 468 469 470 471 472 473
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
474 475 476
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
Philipp Arras's avatar
Philipp Arras committed
477
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
478
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
479
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
480 481
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
482
        _limit_xy(**kwargs)
483 484
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
485
        return
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
    if len(dom) == 2:
        if (not isinstance(dom[1], RGSpace)) or len(dom[1].shape) != 1:
            raise TypeError("need 1D RGSpace as second domain")
        rgb = _rgb_data(f.to_global_data())
        have_rgb = True

    label = kwargs.pop("label", None)

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    dom = dom[0]
    if not have_rgb:
        cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm)
        else:
            im = ax.imshow(
                f.to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm)
            plt.colorbar(im)
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
531
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
532 533 534
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
535 536 537
        if have_rgb:
            res = np.full(shape=res.shape+(3,), fill_value=1., dtype=np.float64)

Martin Reinecke's avatar
Martin Reinecke committed
538 539 540 541
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
542 543 544 545 546
            base = pyHealpix.Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
                res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
547 548 549 550 551 552
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
553 554 555 556
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
                res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
557
        plt.axis('off')
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
            plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                       cmap=cmap, origin="lower")
            plt.colorbar(orientation="horizontal")
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
    if isinstance(f, Field):
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
    if not isinstance(f[0], Field):
            raise TypeError("incorrect data type")
    dom1 = f[0].domain
    if (len(dom1)==1 and
        (isinstance(dom1[0],PowerSpace) or
            (isinstance(dom1[0], RGSpace) and len(dom1[0].shape) == 1))):
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
587 588
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
589

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
        After doing one or more calls `plot()`, one also needs to call
        `plot_finish()` to output the result.

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
606
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
607
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo  
Martin Reinecke committed
608
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
609
            If it is a list, all list members must be Fields defined over the
610 611
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
Philipp Arras's avatar
Philipp Arras committed
612
            title of the plot.
613
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
614
            Label for the x axis.
615
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
616
            Label for the y axis.
617
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
618
            Limits for the values to plot.
619
        colormap: string
Philipp Arras's avatar
Philipp Arras committed
620
            Color map to use for the plot (if it is a 2D plot).
621
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
622
            Line width.
623
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
624
            Annotation string.
625 626 627 628 629 630 631 632 633 634 635 636
        alpha: float or list of floats
            transparency value
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
637 638 639 640 641 642 643 644
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
645
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
646
            Supported extensions: .png and .pdf. Default: None.
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
        nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
        ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))