sugar.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
import sys
20
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
22
from .field import Field
Martin Reinecke's avatar
fix    
Martin Reinecke committed
23
from .multi.multi_field import MultiField
Reimar H Leike's avatar
Reimar H Leike committed
24
from .multi.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
25
from .multi.multi_domain import MultiDomain
Martin Reinecke's avatar
Martin Reinecke committed
26
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operators.scaling_operator import ScalingOperator
Martin Reinecke's avatar
Martin Reinecke committed
28
from .operators.power_distributor import PowerDistributor
Martin Reinecke's avatar
Martin Reinecke committed
29
30
from .domain_tuple import DomainTuple
from . import dobj, utilities
Martin Reinecke's avatar
Martin Reinecke committed
31
from .logger import logger
32

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
33
34
35
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
           'full', 'empty', 'from_global_data', 'from_local_data',
Martin Reinecke's avatar
Martin Reinecke committed
36
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'conjugate',
Martin Reinecke's avatar
Martin Reinecke committed
37
           'get_signal_variance', 'makeOp']
38

39

40
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
41
42
43
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
44
    return Field(pspace, val=data)
Martin Reinecke's avatar
Martin Reinecke committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46

47
48
49
50
51
52
53
54
55
56
57
58
59
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

    This is a small helper function that computes how the expected variance
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
63
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
64
65
66
67
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
68
69
        raise ValueError(
            "space must be either a harmonic space or Power space.")
70
71
72
73
74
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

75

76
77
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
78
79
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
80
81


Martin Reinecke's avatar
Martin Reinecke committed
82
83
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
84
85
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
86
    """ Computes the power spectrum for a subspace of `field`.
87
88
89
90

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
91
92
    harmonic space. The resulting field has the same units as the square of the
    initial field.
93
94
95
96
97

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
101
        If None, all subdomains will be converted.
102
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
103
    binbounds : None or array-like, optional
104
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
105
106
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
107
108
109
110
111
112
113
114
115
116
117
118
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
119
    Field
120
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
121
        the power spectrum of `field`.
122
123
124
125
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
126
127
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
128

129
    spaces = utilities.parse_spaces(spaces, len(field.domain))
130
131
132
133

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

134
135
136
137
    field_real = not np.issubdtype(field.dtype, np.complexfloating)
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

138
139
140
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
141
142
143
144
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
145
146

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
147
        parts = [_single_power_analyze(part, space_index, binbounds)
148
149
150
151
152
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
153
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
154
155
156
157
158
159
160
161
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
162
        fp = Field(power_domain, val=power_spectrum.val)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
163
164
    else:
        power_domain = PowerSpace(domain)
165
        fp = PS_field(power_domain, power_spectrum)
166

Martin Reinecke's avatar
Martin Reinecke committed
167
    return PowerDistributor(domain, power_domain)(fp)
168

169

170
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
171
    """ Creates a diagonal operator with the given power spectrum.
172

173
    Constructs a diagonal operator that lives over the specified domain.
174

175
176
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
177
    domain : Domain, tuple of Domain or DomainTuple
178
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
179
180
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
181
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
182
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
183

184
185
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
186
187
    DiagonalOperator
        An operator that implements the given power spectrum.
188
    """
Martin Reinecke's avatar
Martin Reinecke committed
189
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
190
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
191
192
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
193

194

195
196
197
198
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def empty(domain, dtype):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.empty(domain, dtype)
    return Field.empty(domain, dtype)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
232
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
233
234
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
235
236


Martin Reinecke's avatar
Martin Reinecke committed
237
238
239
240
241
242
243
244
245
246
247
248
def makeOp(input, domain=None):
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
        return BlockDiagonalOperator({key: makeOp(val)
                                      for key, val in input.items()})
    if np.isscalar(input):
        if domain is None:
            raise ValueError("domain needs to be set")
        return ScalingOperator(input, domain)
    raise NotImplementedError

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Arithmetic functions working on Fields

_current_module = sys.modules[__name__]

for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
    def func(f):
        def func2(x, out=None):
            if isinstance(x, MultiField):
                if out is not None:
                    if (not isinstance(out, MultiField) or
                            x._domain != out._domain):
                        raise ValueError("Bad 'out' argument")
                    for key, value in x.items():
                        func2(value, out=out[key])
                    return out
                return MultiField({key: func2(val) for key, val in x.items()})
265
266
267
268
269
270
271
272
273
            elif isinstance(x, Field):
                fu = getattr(dobj, f)
                if out is not None:
                    if not isinstance(out, Field) or x._domain != out._domain:
                        raise ValueError("Bad 'out' argument")
                    fu(x.val, out=out.val)
                    return out
                else:
                    return Field(domain=x._domain, val=fu(x.val))
274
            else:
275
                return getattr(np, f)(x, out)
276
277
        return func2
    setattr(_current_module, f, func(f))