test_minimizers.py 1.8 KB
Newer Older
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
1
2
import unittest

3
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
4
from numpy.testing import assert_equal, assert_allclose
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
5

6
from nifty import Field, DiagonalOperator, RGSpace, HPSpace
Martin Reinecke's avatar
Martin Reinecke committed
7
from nifty import ConjugateGradient, QuadraticEnergy
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
8
9
10

from test.common import expand

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
spaces = [RGSpace([1024, 1024], distances=0.123), HPSpace(32)]


class Test_ConjugateGradient(unittest.TestCase):

    def test_interface(self):
        iteration_limit = 100
        convergence_level = 4
        convergence_tolerance = 1E-6
        callback = lambda z: z
        minimizer = ConjugateGradient(
                                iteration_limit=iteration_limit,
                                convergence_tolerance=convergence_tolerance,
                                convergence_level=convergence_level,
                                callback=callback)

        assert_equal(minimizer.iteration_limit, iteration_limit)
        assert_equal(minimizer.convergence_level, convergence_level)
        assert_equal(minimizer.convergence_tolerance, convergence_tolerance)
        assert(minimizer.callback is callback)

    @expand([[space] for space in spaces])
    def test_minimization(self, space):
        np.random.seed(42)
        starting_point = Field.from_random('normal', domain=space)*10
        covariance_diagonal = Field.from_random('uniform', domain=space) + 0.5
        covariance = DiagonalOperator(space, diagonal=covariance_diagonal)
        required_result = Field(space, val=1.)

        minimizer = ConjugateGradient()
Martin Reinecke's avatar
Martin Reinecke committed
41
42
        energy = QuadraticEnergy(A=covariance, b=required_result,
                                 position=starting_point)
43

Martin Reinecke's avatar
Martin Reinecke committed
44
        (energy, convergence) = minimizer(energy)
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46
        assert_allclose(energy.position.val.get_full_data(),
47
                            1./covariance_diagonal.val.get_full_data(),
Martin Reinecke's avatar
Martin Reinecke committed
48
                            rtol=1e-3)