test_field.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19

import unittest
20
from itertools import product
Jait Dixit's avatar
Jait Dixit committed
21
from test.common import expand
22

23
24
25
import nifty5 as ift
import numpy as np
from numpy.testing import assert_allclose, assert_equal, assert_raises
26

Martin Reinecke's avatar
Martin Reinecke committed
27
SPACES = [ift.RGSpace((4,)), ift.RGSpace((5))]
Theo Steininger's avatar
Theo Steininger committed
28
SPACE_COMBINATIONS = [(), SPACES[0], SPACES[1], SPACES]
29
30
31


class Test_Interface(unittest.TestCase):
32
    @expand(product(SPACE_COMBINATIONS,
Martin Reinecke's avatar
Martin Reinecke committed
33
34
                    [['domain', ift.DomainTuple],
                     ['val', ift.dobj.data_object],
35
                     ['shape', tuple],
Martin Reinecke's avatar
Martin Reinecke committed
36
                     ['size', (np.int, np.int64)]]))
37
38
39
    def test_return_types(self, domain, attribute_desired_type):
        attribute = attribute_desired_type[0]
        desired_type = attribute_desired_type[1]
Martin Reinecke's avatar
Martin Reinecke committed
40
        f = ift.Field.full(domain, 1.)
Martin Reinecke's avatar
Martin Reinecke committed
41
        assert_equal(isinstance(getattr(f, attribute), desired_type), True)
42

Martin Reinecke's avatar
Martin Reinecke committed
43

Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
48
49
50
51
def _spec1(k):
    return 42/(1.+k)**2


def _spec2(k):
    return 42/(1.+k)**3


52
class Test_Functionality(unittest.TestCase):
Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
56
    @expand(product([ift.RGSpace((8,), harmonic=True),
                     ift.RGSpace((8, 8), harmonic=True, distances=0.123)],
                    [ift.RGSpace((8,), harmonic=True),
                     ift.LMSpace(12)]))
Martin Reinecke's avatar
more    
Martin Reinecke committed
57
    def test_power_synthesize_analyze(self, space1, space2):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
58
        np.random.seed(11)
59

Martin Reinecke's avatar
Martin Reinecke committed
60
        p1 = ift.PowerSpace(space1)
61
        fp1 = ift.PS_field(p1, _spec1)
Martin Reinecke's avatar
Martin Reinecke committed
62
        p2 = ift.PowerSpace(space2)
63
64
        fp2 = ift.PS_field(p2, _spec2)
        outer = np.outer(fp1.to_global_data(), fp2.to_global_data())
65
        fp = ift.Field.from_global_data((p1, p2), outer)
66

67
68
        op1 = ift.create_power_operator((space1, space2), _spec1, 0)
        op2 = ift.create_power_operator((space1, space2), _spec2, 1)
Martin Reinecke's avatar
Martin Reinecke committed
69
        opfull = op2(op1)
70

Martin Reinecke's avatar
Martin Reinecke committed
71
        samples = 500
72
73
        sc1 = ift.StatCalculator()
        sc2 = ift.StatCalculator()
Martin Reinecke's avatar
Martin Reinecke committed
74
        for ii in range(samples):
75
            sk = opfull.draw_sample()
76

Martin Reinecke's avatar
Martin Reinecke committed
77
78
            sp = ift.power_analyze(sk, spaces=(0, 1),
                                   keep_phase_information=False)
79
80
            sc1.add(sp.sum(spaces=1)/fp2.sum())
            sc2.add(sp.sum(spaces=0)/fp1.sum())
81

82
83
        assert_allclose(sc1.mean.local_data, fp1.local_data, rtol=0.2)
        assert_allclose(sc2.mean.local_data, fp2.local_data, rtol=0.2)
Martin Reinecke's avatar
Martin Reinecke committed
84

Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
88
    @expand(product([ift.RGSpace((8,), harmonic=True),
                     ift.RGSpace((8, 8), harmonic=True, distances=0.123)],
                    [ift.RGSpace((8,), harmonic=True),
                     ift.LMSpace(12)]))
89
    def test_DiagonalOperator_power_analyze2(self, space1, space2):
Martin Reinecke's avatar
Martin Reinecke committed
90
91
        np.random.seed(11)

92
93
        fp1 = ift.PS_field(ift.PowerSpace(space1), _spec1)
        fp2 = ift.PS_field(ift.PowerSpace(space2), _spec2)
Martin Reinecke's avatar
Martin Reinecke committed
94

95
96
        S_1 = ift.create_power_operator((space1, space2), _spec1, 0)
        S_2 = ift.create_power_operator((space1, space2), _spec2, 1)
Martin Reinecke's avatar
Martin Reinecke committed
97
        S_full = S_2(S_1)
Martin Reinecke's avatar
Martin Reinecke committed
98
99

        samples = 500
100
101
        sc1 = ift.StatCalculator()
        sc2 = ift.StatCalculator()
Martin Reinecke's avatar
Martin Reinecke committed
102
103

        for ii in range(samples):
104
            sk = S_full.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
105
106
            sp = ift.power_analyze(sk, spaces=(0, 1),
                                   keep_phase_information=False)
107
108
            sc1.add(sp.sum(spaces=1)/fp2.sum())
            sc2.add(sp.sum(spaces=0)/fp1.sum())
Martin Reinecke's avatar
Martin Reinecke committed
109

110
111
        assert_allclose(sc1.mean.local_data, fp1.local_data, rtol=0.2)
        assert_allclose(sc2.mean.local_data, fp2.local_data, rtol=0.2)
Martin Reinecke's avatar
Martin Reinecke committed
112

113
114
115
116
117
118
    @expand(product([ift.RGSpace((8,), harmonic=True), (),
                     ift.RGSpace((8, 8), harmonic=True, distances=0.123),
                     ift.RGSpace((2, 3, 7))]))
    def test_norm(self, space):
        f = ift.Field.from_random("normal", domain=space, dtype=np.complex128)
        gd = f.to_global_data().reshape(-1)
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
122
123
124
        assert_allclose(f.norm(), np.linalg.norm(gd))
        assert_allclose(f.norm(1), np.linalg.norm(gd, ord=1))
        assert_allclose(f.norm(2), np.linalg.norm(gd, ord=2))
        assert_allclose(f.norm(3), np.linalg.norm(gd, ord=3))
        assert_allclose(f.norm(np.inf), np.linalg.norm(gd, ord=np.inf))

Martin Reinecke's avatar
Martin Reinecke committed
125
    def test_vdot(self):
Martin Reinecke's avatar
Martin Reinecke committed
126
127
128
        s = ift.RGSpace((10,))
        f1 = ift.Field.from_random("normal", domain=s, dtype=np.complex128)
        f2 = ift.Field.from_random("normal", domain=s, dtype=np.complex128)
Martin Reinecke's avatar
Martin Reinecke committed
129
        assert_allclose(f1.vdot(f2), f1.vdot(f2, spaces=0))
130
        assert_allclose(f1.vdot(f2), np.conj(f2.vdot(f1)))
131
132
133
134

    def test_vdot2(self):
        x1 = ift.RGSpace((200,))
        x2 = ift.RGSpace((150,))
Martin Reinecke's avatar
Martin Reinecke committed
135
        m = ift.Field.full((x1, x2), .5)
136
        res = m.vdot(m, spaces=1)
Martin Reinecke's avatar
Martin Reinecke committed
137
        assert_allclose(res.local_data, 37.5)
Martin Reinecke's avatar
Martin Reinecke committed
138

139
140
141
142
143
144
145
146
    def test_outer(self):
        x1 = ift.RGSpace((9,))
        x2 = ift.RGSpace((3,))
        m1 = ift.Field.full(x1, .5)
        m2 = ift.Field.full(x2, 3.)
        res = m1.outer(m2)
        assert_allclose(res.local_data, np.full((9, 3,), 1.5))

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def test_dataconv(self):
        s1 = ift.RGSpace((10,))
        ld = np.arange(ift.dobj.local_shape(s1.shape)[0])
        gd = np.arange(s1.shape[0])
        assert_equal(ld, ift.from_local_data(s1, ld).local_data)
        assert_equal(gd, ift.from_global_data(s1, gd).to_global_data())

    def test_cast_domain(self):
        s1 = ift.RGSpace((10,))
        s2 = ift.RGSpace((10,), distances=20.)
        d = np.arange(s1.shape[0])
        d2 = ift.from_global_data(s1, d).cast_domain(s2).to_global_data()
        assert_equal(d, d2)

    def test_empty_domain(self):
162
        f = ift.Field.full((), 5)
163
        assert_equal(f.local_data, 5)
164
        f = ift.Field.full(None, 5)
165
        assert_equal(f.local_data, 5)
166
167
168

    def test_trivialities(self):
        s1 = ift.RGSpace((10,))
169
        f1 = ift.Field.full(s1, 27)
170
        assert_equal(f1.local_data, f1.real.local_data)
171
        f1 = ift.Field.full(s1, 27.+3j)
172
173
174
175
176
        assert_equal(f1.real.local_data, 27.)
        assert_equal(f1.imag.local_data, 3.)
        assert_equal(f1.local_data, +f1.local_data)
        assert_equal(f1.sum(), f1.sum(0))
        f1 = ift.from_global_data(s1, np.arange(10))
177
178
#        assert_equal(f1.min(), 0)
#        assert_equal(f1.max(), 9)
179
180
181
182
        assert_equal(f1.prod(), 0)

    def test_weight(self):
        s1 = ift.RGSpace((10,))
183
        f = ift.Field.full(s1, 10.)
184
        f2 = f.weight(1)
185
186
187
188
189
190
191
192
        assert_equal(f.weight(1).local_data, f2.local_data)
        assert_equal(f.total_volume(), 1)
        assert_equal(f.total_volume(0), 1)
        assert_equal(f.total_volume((0,)), 1)
        assert_equal(f.scalar_weight(), 0.1)
        assert_equal(f.scalar_weight(0), 0.1)
        assert_equal(f.scalar_weight((0,)), 0.1)
        s1 = ift.GLSpace(10)
193
        f = ift.Field.full(s1, 10.)
194
195
196
197
198
199
200
        assert_equal(f.scalar_weight(), None)
        assert_equal(f.scalar_weight(0), None)
        assert_equal(f.scalar_weight((0,)), None)

    @expand(product([ift.RGSpace(10), ift.GLSpace(10)],
                    [np.float64, np.complex128]))
    def test_reduction(self, dom, dt):
201
        s1 = ift.Field.full(dom, dt(1.))
202
203
204
205
206
207
208
209
210
211
        assert_allclose(s1.mean(), 1.)
        assert_allclose(s1.mean(0), 1.)
        assert_allclose(s1.var(), 0., atol=1e-14)
        assert_allclose(s1.var(0), 0., atol=1e-14)
        assert_allclose(s1.std(), 0., atol=1e-14)
        assert_allclose(s1.std(0), 0., atol=1e-14)

    def test_err(self):
        s1 = ift.RGSpace((10,))
        s2 = ift.RGSpace((11,))
212
        f1 = ift.Field.full(s1, 27)
213
        with assert_raises(ValueError):
214
            f2 = ift.Field(ift.DomainTuple.make(s2), f1.val)
215
        with assert_raises(TypeError):
216
            f2 = ift.Field.full(s2, "xyz")
217
218
219
220
221
222
223
        with assert_raises(TypeError):
            if f1:
                pass
        with assert_raises(TypeError):
            f1.full((2, 4, 6))
        with assert_raises(TypeError):
            f2 = ift.Field(None, None)
224
        with assert_raises(TypeError):
225
226
227
228
229
230
            f2 = ift.Field(s1, None)
        with assert_raises(ValueError):
            f1.imag
        with assert_raises(TypeError):
            f1.vdot(42)
        with assert_raises(ValueError):
231
            f1.vdot(ift.Field.full(s2, 1.))
232
233
234
        with assert_raises(TypeError):
            ift.full(s1, [2, 3])

Martin Reinecke's avatar
Martin Reinecke committed
235
236
    def test_stdfunc(self):
        s = ift.RGSpace((200,))
237
        f = ift.Field.full(s, 27)
Martin Reinecke's avatar
Martin Reinecke committed
238
239
240
        assert_equal(f.local_data, 27)
        assert_equal(f.shape, (200,))
        assert_equal(f.dtype, np.int)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
241
        fx = ift.full(f.domain, 0)
Martin Reinecke's avatar
Martin Reinecke committed
242
243
244
        assert_equal(f.dtype, fx.dtype)
        assert_equal(f.shape, fx.shape)
        assert_equal(fx.local_data, 0)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
245
        fx = ift.full(f.domain, 1)
Martin Reinecke's avatar
Martin Reinecke committed
246
247
248
        assert_equal(f.dtype, fx.dtype)
        assert_equal(f.shape, fx.shape)
        assert_equal(fx.local_data, 1)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
249
        fx = ift.full(f.domain, 67.)
Martin Reinecke's avatar
Martin Reinecke committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        assert_equal(f.shape, fx.shape)
        assert_equal(fx.local_data, 67.)
        f = ift.Field.from_random("normal", s)
        f2 = ift.Field.from_random("normal", s)
        assert_equal((f > f2).local_data, f.local_data > f2.local_data)
        assert_equal((f >= f2).local_data, f.local_data >= f2.local_data)
        assert_equal((f < f2).local_data, f.local_data < f2.local_data)
        assert_equal((f <= f2).local_data, f.local_data <= f2.local_data)
        assert_equal((f != f2).local_data, f.local_data != f2.local_data)
        assert_equal((f == f2).local_data, f.local_data == f2.local_data)
        assert_equal((f+f2).local_data, f.local_data+f2.local_data)
        assert_equal((f-f2).local_data, f.local_data-f2.local_data)
        assert_equal((f*f2).local_data, f.local_data*f2.local_data)
        assert_equal((f/f2).local_data, f.local_data/f2.local_data)
        assert_equal((-f).local_data, -(f.local_data))
        assert_equal(abs(f).local_data, abs(f.local_data))
Martin Reinecke's avatar
Martin Reinecke committed
266
267
268
269
270
271
272
273
274

    def test_emptydomain(self):
        f = ift.Field.full((), 3.)
        assert_equal(f.sum(), 3.)
        assert_equal(f.prod(), 3.)
        assert_equal(f.local_data, 3.)
        assert_equal(f.local_data.shape, ())
        assert_equal(f.local_data.size, 1)
        assert_equal(f.vdot(f), 9.)