test_fisher_metric.py 4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2020 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

Philipp Arras's avatar
Philipp Arras committed
21
import nifty7 as ift
22
23
24
25
26
27
28
29
30

from ..common import list2fixture, setup_function, teardown_function

spaces = [ift.GLSpace(5),
          (ift.RGSpace(3, distances=.789), ift.UnstructuredDomain(2))]
pmp = pytest.mark.parametrize
field = list2fixture([ift.from_random(sp, 'normal') for sp in spaces] +
        [ift.from_random(sp, 'normal', dtype=np.complex128) for sp in spaces])

Reimar Leike's avatar
Reimar Leike committed
31
Nsamp = 2000
Reimar Leike's avatar
Reimar Leike committed
32
np.random.seed(42)
33
34
35
36
37
38
39

def _to_array(d):
    if isinstance(d, np.ndarray):
        return d
    assert isinstance(d, dict)
    return np.concatenate(list(d.values()))

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def _complex2real(sp):
    tup = tuple([d for d in sp])
    rsp = ift.DomainTuple.make((ift.UnstructuredDomain(2),) + tup)
    rl = ift.DomainTupleFieldInserter(rsp, 0, (0,))
    im = ift.DomainTupleFieldInserter(rsp, 0, (1,))
    x = ift.ScalingOperator(sp, 1)
    return rl(x.real)+im(x.imag)

def test_complex2real():
    sp = ift.UnstructuredDomain(3)
    op = _complex2real(ift.makeDomain(sp))
    f = ift.from_random(op.domain, 'normal', dtype=np.complex128)
    assert np.all((f == op.adjoint_times(op(f))).val)
    assert op(f).dtype == np.float64
    f = ift.from_random(op.target, 'normal')
    assert np.all((f == op(op.adjoint_times(f))).val)
    
def energy_tester_complex(pos, get_noisy_data, energy_initializer):
    op = _complex2real(pos.domain)
    npos = op(pos)
    nget_noisy_data = lambda mean : get_noisy_data(op.adjoint_times(mean))
    nenergy_initializer = lambda mean : energy_initializer(mean) @ op.adjoint
    energy_tester(npos, nget_noisy_data, nenergy_initializer)

64
def energy_tester(pos, get_noisy_data, energy_initializer):
65
66
67
    if np.issubdtype(pos.dtype, np.complexfloating):
        energy_tester_complex(pos, get_noisy_data, energy_initializer)
        return
68
69
70
71
72
73
74
75
76
    domain = pos.domain
    test_vec = ift.from_random(domain, 'normal')
    results = []
    lin = ift.Linearization.make_var(pos)
    for i in range(Nsamp):
        data = get_noisy_data(pos)
        energy = energy_initializer(data)
        grad = energy(lin).jac.adjoint(ift.full(energy.target, 1.))
        results.append(_to_array((grad*grad.s_vdot(test_vec)).val))
77
78
    print(energy)
    print(grad)
79
80
81
82
83
    res = np.mean(np.array(results), axis=0)
    std = np.std(np.array(results), axis=0)/np.sqrt(Nsamp)
    energy = energy_initializer(data)
    lin = ift.Linearization.make_var(pos, want_metric=True)
    res2 = _to_array(energy(lin).metric(test_vec).val)
Reimar Leike's avatar
Reimar Leike committed
84
    np.testing.assert_allclose(res/std, res2/std, atol=6)
85
86
87

def test_GaussianEnergy(field):
    dtype = field.dtype
88

89
90
    icov = ift.from_random(field.domain, 'normal')**2
    icov = ift.makeOp(icov)
91
    get_noisy_data = lambda mean : mean + icov.draw_sample_with_dtype(
92
93
94
95
96
97
98
99
100
101
102
103
            from_inverse=True, dtype=dtype)
    E_init = lambda mean : ift.GaussianEnergy(mean=mean,
            inverse_covariance=icov)
    energy_tester(field, get_noisy_data, E_init)

def test_PoissonEnergy(field):
    if not isinstance(field, ift.Field):
        return
    if np.iscomplexobj(field.val):
        return
    def get_noisy_data(mean):
        return ift.makeField(mean.domain, np.random.poisson(mean.val))
104
    lam = 10*(field**2).clip(0.1,None) # make rate positive and high enough to avoid bad statistic
105
106
107
    E_init = lambda mean : ift.PoissonianEnergy(mean)
    energy_tester(lam, get_noisy_data, E_init)