nifty_core.py 468 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46 47 48 49 50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51 52 53 54 55 56 57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58 59 60 61 62 63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64 65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88 89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90 91
    .. automodule:: nifty

92 93 94 95 96 97 98 99 100 101 102 103 104 105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109 110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118 119 120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141 142

"""
Marco Selig's avatar
Marco Selig committed
143
## standard libraries
Marco Selig's avatar
Marco Selig committed
144 145 146 147 148
from __future__ import division
import os
#import sys
from sys import stdout as so
import numpy as np
Marco Selig's avatar
Marco Selig committed
149 150 151 152
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
from multiprocessing import Pool as mp
153 154
from multiprocessing import Value as mv
from multiprocessing import Array as ma
Marco Selig's avatar
Marco Selig committed
155
## third party libraries
Marco Selig's avatar
Marco Selig committed
156 157 158
import gfft as gf
import healpy as hp
import libsharp_wrapper_gl as gl
Marco Selig's avatar
Marco Selig committed
159
## internal libraries
Marco Selig's avatar
Marco Selig committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
import smoothing as gs
import powerspectrum as gp


pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679


##-----------------------------------------------------------------------------

class switch(object):
    """
        ..                            __   __               __
        ..                          /__/ /  /_            /  /
        ..     _______  __     __   __  /   _/  _______  /  /___
        ..   /  _____/ |  |/\/  / /  / /  /   /   ____/ /   _   |
        ..  /_____  /  |       / /  / /  /_  /  /____  /  / /  /
        .. /_______/   |__/\__/ /__/  \___/  \______/ /__/ /__/  class

        NIFTY support class for switches.

        Parameters
        ----------
        default : bool
            Default status of the switch (default: False).

        See Also
        --------
        notification : A derived class for displaying notifications.

        Examples
        --------
        >>> option = switch()
        >>> option.status
        False
        >>> option
        OFF
        >>> print(option)
        OFF
        >>> option.on()
        >>> print(option)
        ON

        Attributes
        ----------
        status : bool
            Status of the switch.

    """
    def __init__(self,default=False):
        """
            Initilizes the switch and sets the `status`

            Parameters
            ----------
            default : bool
                Default status of the switch (default: False).

        """
        self.status = bool(default)

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def on(self):
        """
            Switches the `status` to True.

        """
        self.status = True

    def off(self):
        """
            Switches the `status` to False.

        """
        self.status = False


    def toggle(self):
        """
            Switches the `status`.

        """
        self.status = not self.status

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        if(self.status):
            return "ON"
        else:
            return "OFF"

##-----------------------------------------------------------------------------

##-----------------------------------------------------------------------------

class notification(switch):
    """
        ..                           __     __   ____   __                       __     __
        ..                         /  /_  /__/ /   _/ /__/                     /  /_  /__/
        ..     __ ___    ______   /   _/  __  /  /_   __   _______   ____ __  /   _/  __   ______    __ ___
        ..   /   _   | /   _   | /  /   /  / /   _/ /  / /   ____/ /   _   / /  /   /  / /   _   | /   _   |
        ..  /  / /  / /  /_/  / /  /_  /  / /  /   /  / /  /____  /  /_/  / /  /_  /  / /  /_/  / /  / /  /
        .. /__/ /__/  \______/  \___/ /__/ /__/   /__/  \______/  \______|  \___/ /__/  \______/ /__/ /__/  class

        NIFTY support class for notifications.

        Parameters
        ----------
        default : bool
            Default status of the switch (default: False).
        ccode : string
            Color code as string (default: "\033[0m"). The surrounding special
            characters are added if missing.

        Notes
        -----
        The color code is a special ANSI escape code, for a list of valid codes
        see [#]_. Multiple codes can be combined by seperating them with a
        semicolon ';'.

        References
        ----------
        .. [#] Wikipedia, `ANSI escape code <http://en.wikipedia.org/wiki/ANSI_escape_code#graphics>`_.

        Examples
        --------
        >>> note = notification()
        >>> note.status
        True
        >>> note.cprint("This is noteworthy.")
        This is noteworthy.
        >>> note.cflush("12"); note.cflush('3')
        123
        >>> note.off()
        >>> note.cprint("This is noteworthy.")
        >>>

        Raises
        ------
        TypeError
            If `ccode` is no string.

        Attributes
        ----------
        status : bool
            Status of the switch.
        ccode : string
            Color code as string.

    """
    _code = "\033[0m" ## "\033[39;49m"

    def __init__(self,default=True,ccode="\033[0m"):
        """
            Initializes the notification and sets `status` and `ccode`

            Parameters
            ----------
            default : bool
                Default status of the switch (default: False).
            ccode : string
                Color code as string (default: "\033[0m"). The surrounding
                special characters are added if missing.

            Raises
            ------
            TypeError
                If `ccode` is no string.

        """
        self.status = bool(default)

        ## check colour code
        if(not isinstance(ccode,str)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))
        if(ccode[0]!="\033"):
            ccode = "\033"+ccode
        if(ccode[1]!='['):
            ccode = ccode[0]+'['+ccode[1:]
        if(ccode[-1]!='m'):
            ccode = ccode+'m'
        self.ccode = ccode

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def set_ccode(self,newccode=None):
        """
            Resets the the `ccode` string.

            Parameters
            ----------
            newccode : string
                Color code as string (default: "\033[0m"). The surrounding
                characters "\033", '[', and 'm' are added if missing.

            Returns
            -------
            None

            Raises
            ------
            TypeError
                If `ccode` is no string.

            Examples
            --------
            >>> note = notification()
            >>> note.set_ccode("31;1") ## "31;1" corresponds to red and bright

        """
        if(newccode is None):
            newccode = self._code
        else:
            ## check colour code
            if(not isinstance(newccode,str)):
                raise TypeError(about._errors.cstring("ERROR: invalid input."))
            if(newccode[0]!="\033"):
                newccode = "\033"+newccode
            if(newccode[1]!='['):
                newccode = newccode[0]+'['+newccode[1:]
            if(newccode[-1]!='m'):
                newccode = newccode+'m'
        self.ccode = newccode

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def cstring(self,subject):
        """
            Casts an object to a string and augments that with a colour code.

            Parameters
            ----------
            subject : {string, object}
                String to be augmented with a color code. A given object is
                cast to its string representation by :py:func:`str`.

            Returns
            -------
            cstring : string
                String augmented with a color code.

        """
        return self.ccode+str(subject)+self._code

    def cflush(self,subject):
        """
            Flushes an object in its colour coded sting representation to the
            standard output (*without* line break).

            Parameters
            ----------
            subject : {string, object}
                String to be flushed. A given object is
                cast to a string by :py:func:`str`.

            Returns
            -------
            None

        """
        if(self.status):
            so.write(self.cstring(subject))
            so.flush()

    def cprint(self,subject):
        """
            Flushes an object in its colour coded sting representation to the
            standard output (*with* line break).

            Parameters
            ----------
            subject : {string, object}
                String to be flushed. A given object is
                cast to a string by :py:func:`str`.

            Returns
            -------
            None

        """
        if(self.status):
            so.write(self.cstring(subject)+"\n")
            so.flush()

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        if(self.status):
            return self.cstring("ON")
        else:
            return self.cstring("OFF")

##-----------------------------------------------------------------------------

##-----------------------------------------------------------------------------

class _about(object): ## nifty support class for global settings
    """
        NIFTY support class for global settings.

        .. warning::
            Turning off the `_error` notification will suppress all NIFTY error
            strings (not recommended).

        Examples
        --------
        >>> from nifty import *
        >>> about
        nifty version 0.2.0
        >>> print(about)
        nifty version 0.2.0
        - errors          = ON (immutable)
        - warnings        = ON
        - infos           = OFF
        - multiprocessing = ON
        - hermitianize    = ON
        - lm2gl           = ON
        >>> about.infos.on()
        >>> about.about.save_config()

        >>> from nifty import *
        INFO: nifty version 0.2.0
        >>> print(about)
        nifty version 0.2.0
        - errors          = ON (immutable)
        - warnings        = ON
        - infos           = ON
        - multiprocessing = ON
        - hermitianize    = ON
        - lm2gl           = ON

        Attributes
        ----------
        warnings : notification
            Notification instance controlling whether warings shall be printed.
        infos : notification
            Notification instance controlling whether information shall be
            printed.
        multiprocessing : switch
            Switch instance controlling whether multiprocessing might be
            performed.
        hermitianize : switch
            Switch instance controlling whether hermitian symmetry for certain
            :py:class:`rg_space` instances is inforced.
        lm2gl : switch
            Switch instance controlling whether default target of a
            :py:class:`lm_space` instance is a :py:class:`gl_space` or a
            :py:class:`hp_space` instance.

    """
    def __init__(self):
        """
            Initializes the _about and sets the attributes.

        """
        ## version
517
        self._version = "0.7.6"
Marco Selig's avatar
Marco Selig committed
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

        ## switches and notifications
        self._errors = notification(default=True,ccode=notification._code)
        self.warnings = notification(default=True,ccode=notification._code)
        self.infos =  notification(default=False,ccode=notification._code)
        self.multiprocessing = switch(default=True)
        self.hermitianize = switch(default=True)
        self.lm2gl = switch(default=True)

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def load_config(self,force=True):
        """
            Reads the configuration file "~/.nifty/nifty_config".

            Parameters
            ----------
            force : bool
                Whether to cause an error if the file does not exsist or not.

            Returns
            -------
            None

            Raises
            ------
            ValueError
                If the configuration file is malformed.
            OSError
                If the configuration file does not exist.

        """
        nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"
        if(os.path.isfile(nconfig)):
            rawconfig = []
            with open(nconfig,'r') as configfile:
                for ll in configfile:
                    if(not ll.startswith('#')):
                        rawconfig += ll.split()
            try:
                self._errors = notification(default=True,ccode=rawconfig[0])
                self.warnings = notification(default=int(rawconfig[1]),ccode=rawconfig[2])
                self.infos =  notification(default=int(rawconfig[3]),ccode=rawconfig[4])
                self.multiprocessing = switch(default=int(rawconfig[5]))
                self.hermitianize = switch(default=int(rawconfig[6]))
                self.lm2gl = switch(default=int(rawconfig[7]))
            except(IndexError):
                raise ValueError(about._errors.cstring("ERROR: '"+nconfig+"' damaged."))
        elif(force):
            raise OSError(about._errors.cstring("ERROR: '"+nconfig+"' nonexisting."))

    def save_config(self):
        """
            Writes to the configuration file "~/.nifty/nifty_config".

            Returns
            -------
            None

        """
        rawconfig = [self._errors.ccode[2:-1],str(int(self.warnings.status)),self.warnings.ccode[2:-1],str(int(self.infos.status)),self.infos.ccode[2:-1],str(int(self.multiprocessing.status)),str(int(self.hermitianize.status)),str(int(self.lm2gl.status))]

        nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"
        if(os.path.isfile(nconfig)):
            rawconfig = [self._errors.ccode[2:-1],str(int(self.warnings.status)),self.warnings.ccode[2:-1],str(int(self.infos.status)),self.infos.ccode[2:-1],str(int(self.multiprocessing.status)),str(int(self.hermitianize.status)),str(int(self.lm2gl.status))]
            nconfig = os.path.expanduser('~')+"/.nifty/nifty_config"

            with open(nconfig,'r') as sourcefile:
                with open(nconfig+"_",'w') as targetfile:
                    for ll in sourcefile:
                        if(ll.startswith('#')):
                            targetfile.write(ll)
                        else:
                            ll = ll.replace(ll.split()[0],rawconfig[0]) ## one(!) per line
                            rawconfig = rawconfig[1:]
                            targetfile.write(ll)
            os.rename(nconfig+"_",nconfig) ## overwrite old congiguration
        else:
            if(not os.path.exists(os.path.expanduser('~')+"/.nifty")):
                os.makedirs(os.path.expanduser('~')+"/.nifty")
            with open(nconfig,'w') as targetfile:
                for rr in rawconfig:
                    targetfile.write(rr+"\n") ## one(!) per line

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
        return "nifty version "+self._version

    def __str__(self):
        return "nifty version "+self._version+"\n- errors          = "+self._errors.cstring("ON")+" (immutable)\n- warnings        = "+str(self.warnings)+"\n- infos           = "+str(self.infos)+"\n- multiprocessing = "+str(self.multiprocessing)+"\n- hermitianize    = "+str(self.hermitianize)+"\n- lm2gl           = "+str(self.lm2gl)

##-----------------------------------------------------------------------------

## set global instance
about = _about()
about.load_config(force=False)
about.infos.cprint("INFO: "+about.__repr__())





##-----------------------------------------------------------------------------

class random(object):
    """
        ..                                          __
        ..                                        /  /
        ..       _____   ____ __   __ ___    ____/  /  ______    __ ____ ___
        ..     /   __/ /   _   / /   _   | /   _   / /   _   | /   _    _   |
        ..    /  /    /  /_/  / /  / /  / /  /_/  / /  /_/  / /  / /  / /  /
        ..   /__/     \______| /__/ /__/  \______|  \______/ /__/ /__/ /__/  class

        NIFTY (static) class for pseudo random number generators.

    """
    __init__ = None

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def arguments(domain,**kwargs):
        """
            Analyses the keyword arguments for supported or necessary ones.

            Parameters
            ----------
            domain : space
                Space wherein the random field values live.
            random : string, *optional*
                Specifies a certain distribution to be drwan from using a
                pseudo random number generator. Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

            dev : {scalar, list, ndarray, field}, *optional*
                Standard deviation of the normal distribution if
                ``random == "gau"`` (default: None).
            var : {scalar, list, ndarray, field}, *optional*
                Variance of the normal distribution (outranks the standard
                deviation) if ``random == "gau"`` (default: None).
Marco Selig's avatar
Marco Selig committed
664
            spec : {scalar, list, array, field, function}, *optional*
Marco Selig's avatar
Marco Selig committed
665 666 667 668
                Power spectrum for ``random == "syn"`` (default: 1).
            size : integer, *optional*
                Number of irreducible bands for ``random == "syn"``
                (default: None).
669 670 671 672 673
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each irreducible band (default: None).
Marco Selig's avatar
Marco Selig committed
674 675 676 677 678 679 680 681 682 683
            vmax : {scalar, list, ndarray, field}, *optional*
                Upper limit of the uniform distribution if ``random == "uni"``
                (default: 1).

            Returns
            -------
            arg : list
                Ordered list of arguments (to be processed in
                ``get_random_values`` of the domain).

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            Other Parameters
            ----------------
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).

Marco Selig's avatar
Marco Selig committed
704 705 706 707 708 709
            Raises
            ------
            KeyError
                If the `random` key is not supporrted.

        """
Marco Selig's avatar
Marco Selig committed
710
        if("random" in kwargs):
Marco Selig's avatar
Marco Selig committed
711 712 713 714 715 716 717 718
            key = kwargs.get("random")
        else:
            return None

        if(key=="pm1"):
            return [key]

        elif(key=="gau"):
Marco Selig's avatar
Marco Selig committed
719
            if("mean" in kwargs):
Marco Selig's avatar
Marco Selig committed
720 721 722
                mean = domain.enforce_values(kwargs.get("mean"),extend=False)
            else:
                mean = None
Marco Selig's avatar
Marco Selig committed
723
            if("dev" in kwargs):
Marco Selig's avatar
Marco Selig committed
724 725 726
                dev = domain.enforce_values(kwargs.get("dev"),extend=False)
            else:
                dev = None
Marco Selig's avatar
Marco Selig committed
727
            if("var" in kwargs):
Marco Selig's avatar
Marco Selig committed
728 729 730 731 732 733
                var = domain.enforce_values(kwargs.get("var"),extend=False)
            else:
                var = None
            return [key,mean,dev,var]

        elif(key=="syn"):
734
            ## explicit power indices
Marco Selig's avatar
Marco Selig committed
735
            if("pindex" in kwargs)and("kindex" in kwargs):
736 737 738 739 740 741 742 743 744 745 746
                kindex = kwargs.get("kindex")
                if(kindex is None):
                    spec = domain.enforce_power(kwargs.get("spec",1),size=kwargs.get("size",None))
                    kpack = None
                else:
                    spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex)
                    pindex = kwargs.get("pindex",None)
                    if(pindex is None):
                        kpack = None
                    else:
                        kpack = [pindex,kindex]
747
            ## implicit power indices
748
            else:
749 750 751
                try:
                    domain.set_power_indices(**kwargs)
                except:
752 753 754 755 756
                    codomain = kwargs.get("codomain",None)
                    if(codomain is None):
                        spec = domain.enforce_power(kwargs.get("spec",1),size=kwargs.get("size",None))
                        kpack = None
                    else:
757 758
                        domain.check_codomain(codomain)
                        codomain.set_power_indices(**kwargs)
759 760 761
                        kindex = codomain.power_indices.get("kindex")
                        spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex,codomain=codomain)
                        kpack = [codomain.power_indices.get("pindex"),kindex]
762
                else:
763
                    kindex = domain.power_indices.get("kindex")
764
                    spec = domain.enforce_power(kwargs.get("spec",1),size=len(kindex),kindex=kindex)
765
                    kpack = [domain.power_indices.get("pindex"),kindex]
766
            return [key,spec,kpack]
Marco Selig's avatar
Marco Selig committed
767 768

        elif(key=="uni"):
Marco Selig's avatar
Marco Selig committed
769
            if("vmin" in kwargs):
Marco Selig's avatar
Marco Selig committed
770 771 772
                vmin = domain.enforce_values(kwargs.get("vmin"),extend=False)
            else:
                vmin = 0
Marco Selig's avatar
Marco Selig committed
773
            if("vmax" in kwargs):
Marco Selig's avatar
Marco Selig committed
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
                vmax = domain.enforce_values(kwargs.get("vmax"),extend=False)
            else:
                vmax = 1
            return [key,vmin,vmax]

        else:
            raise KeyError(about._errors.cstring("ERROR: unsupported random key '"+str(key)+"'."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def pm1(datatype=np.int,shape=1):
        """
            Generates random field values according to an uniform distribution
            over {+1,-1} or {+1,+i,-1,-i}, respectively.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.int).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)

805
        if(issubclass(datatype,np.complexfloating)):
Marco Selig's avatar
Marco Selig committed
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
            x = np.array([1+0j,0+1j,-1+0j,0-1j],dtype=datatype)[np.random.randint(4,high=None,size=size)]
        else:
            x = 2*np.random.randint(2,high=None,size=size)-1

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def gau(datatype=np.float64,shape=1,mean=None,dev=None,var=None):
        """
            Generates random field values according to a normal distribution.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.float64).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).
            mean : {scalar, ndarray}, *optional*
                Mean of the normal distribution (default: 0).
            dev : {scalar, ndarray}, *optional*
                Standard deviation of the normal distribution (default: 1).
            var : {scalar, ndarray}, *optional*
                Variance of the normal distribution (outranks the standard
                deviation) (default: None).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

            Raises
            ------
            ValueError
                If the array dimension of `mean`, `dev` or `var` mismatch with
                `shape`.

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)

847
        if(issubclass(datatype,np.complexfloating)):
Marco Selig's avatar
Marco Selig committed
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
            x = np.empty(size,dtype=datatype,order='C')
            x.real = np.random.normal(loc=0,scale=np.sqrt(0.5),size=size)
            x.imag = np.random.normal(loc=0,scale=np.sqrt(0.5),size=size)
        else:
            x = np.random.normal(loc=0,scale=1,size=size)

        if(var is not None):
            if(np.size(var)==1):
                x *= np.sqrt(np.abs(var))
            elif(np.size(var)==size):
                x *= np.sqrt(np.absolute(var).flatten(order='C'))
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(var))+" <> "+str(size)+" )."))
        elif(dev is not None):
            if(np.size(dev)==1):
                x *= np.abs(dev)
            elif(np.size(dev)==size):
                x *= np.absolute(dev).flatten(order='C')
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(dev))+" <> "+str(size)+" )."))
        if(mean is not None):
            if(np.size(mean)==1):
                x += mean
            elif(np.size(mean)==size):
                x += np.array(mean).flatten(order='C')
            else:
                raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(mean))+" <> "+str(size)+" )."))

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    @staticmethod
    def uni(datatype=np.float64,shape=1,vmin=0,vmax=1):
        """
            Generates random field values according to an uniform distribution
            over [vmin,vmax[.

            Parameters
            ----------
            datatype : type, *optional*
                Data type of the field values (default: np.float64).
            shape : {integer, tuple, list, ndarray}, *optional*
                Split up dimension of the space (default: 1).

            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution (default: 0).
            vmax : {scalar, list, ndarray, field}, *optional*
                Upper limit of the uniform distribution (default: 1).

            Returns
            -------
            x : ndarray
                Random field values (with correct dtype and shape).

        """
        size = np.prod(shape,axis=0,dtype=np.int,out=None)
        if(np.size(vmin)>1):
            vmin = np.array(vmin).flatten(order='C')
        if(np.size(vmax)>1):
            vmax = np.array(vmax).flatten(order='C')

        if(datatype in [np.complex64,np.complex128]):
            x = np.empty(size,dtype=datatype,order='C')
            x.real = (vmax-vmin)*np.random.random(size=size)+vmin
            x.imag = (vmax-vmin)*np.random.random(size=size)+vmin
        elif(datatype in [np.int8,np.int16,np.int32,np.int64]):
            x = np.random.randint(min(vmin,vmax),high=max(vmin,vmax),size=size)
        else:
            x = (vmax-vmin)*np.random.random(size=size)+vmin

        return x.astype(datatype).reshape(shape,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
924
        return "<nifty_core.random>"
Marco Selig's avatar
Marco Selig committed
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

##-----------------------------------------------------------------------------





##=============================================================================

class space(object):
    """
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.

        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.

        Parameters
        ----------
        para : {single object, list of objects}, *optional*
            This is a freeform list of parameters that derivatives of the space
            class can use (default: 0).
        datatype : numpy.dtype, *optional*
            Data type of the field values for a field defined on this space
            (default: numpy.float64).

        See Also
        --------
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
Marco Selig's avatar
Marco Selig committed
973 974
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
975
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

        Attributes
        ----------
        para : {single object, list of objects}
            This is a freeform list of parameters that derivatives of the space class can use.
        datatype : numpy.dtype
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
    """
    def __init__(self,para=0,datatype=None):
        """
            Sets the attributes for a space class instance.

            Parameters
            ----------
            para : {single object, list of objects}, *optional*
                This is a freeform list of parameters that derivatives of the
                space class can use (default: 0).
            datatype : numpy.dtype, *optional*
                Data type of the field values for a field defined on this space
                (default: numpy.float64).

            Returns
            -------
            None
        """
        if(np.isscalar(para)):
            para = np.array([para],dtype=np.int)
        else:
            para = np.array(para,dtype=np.int)
        self.para = para

        ## check data type
        if(datatype is None):
            datatype = np.float64
        elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]):
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype

        self.discrete = True
        self.vol = np.real(np.array([1],dtype=self.datatype))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def dim(self,split=False):
        """
            Computes the dimension of the space, i.e.\  the number of pixels.

            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).

            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
1041
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def dof(self):
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
1054
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
1055 1056 1057 1058 1059 1060 1061 1062 1063

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_power(self,spec,**kwargs):
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
Marco Selig's avatar
Marco Selig committed
1064
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
Marco Selig's avatar
Marco Selig committed
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
1078 1079
            kindex : numpy.ndarray, *optional*
                Scale of each band.
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
1097

Marco Selig's avatar
Marco Selig committed
1098
        """
1099
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
1100 1101 1102

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
#    def get_power_index(self,irreducible=False): ## TODO: remove in future version
#        """
#            **DEPRECATED** Provides the indexing array of the power spectrum.
#
#            Provides either an array giving for each component of a field the
#            corresponding index of a power spectrum (if ``irreducible==False``)
#            or two arrays containing the scales of the modes and the numbers of
#            modes with this scale (if ``irreducible==True``).
#
#            Parameters
#            ----------
#            irreducible : bool, *optional*
#                Whether to return two arrays containing the scales and
#                corresponding number of represented modes (if True) or the
#                indexing array (if False) (default: False).
#
#            Returns
#            -------
#            kindex : numpy.ndarray
#                Scale of each band, returned only if ``irreducible==True``.
#            rho : numpy.ndarray
#                Number of modes per scale represented in the discretization,
#                returned only if ``irreducible==True``.
#            pindex : numpy.ndarray
#                Indexing array giving the power spectrum index for each
#                represented mode, returned only if ``irreducible==False``.
#
#            Notes
#            -----
#            The indexing array is of the same shape as a field living in this
#            space and contains the indices of the associated bands.
#            kindex and rho are each one-dimensional arrays.
#        """
#        about.warnings.cprint("WARNING: 'get_power_index' is deprecated.")
#        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_power_index'."))
Marco Selig's avatar
Marco Selig committed
1138

1139
    def get_power_undex(self,pindex=None): ## TODO: remove in future version
1140
        """
Marco Selig's avatar
Marco Selig committed
1141
            **DEPRECATED** Provides the Unindexing array for an indexed power spectrum.
1142 1143 1144 1145 1146 1147 1148 1149 1150

            Parameters
            ----------
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index for each
                represented mode.

            Returns
            -------
Marco Selig's avatar
Marco Selig committed
1151 1152
            pundex : numpy.ndarray
                Unindexing array undoing power indexing.
1153 1154 1155

            Notes
            -----
Marco Selig's avatar
Marco Selig committed
1156 1157
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
1158

1159
            See Also
1160 1161 1162 1163
            --------
            get_power_index

        """
1164
        about.warnings.cprint("WARNING: 'get_power_undex' is deprecated.")
1165 1166
        if(pindex is None):
            pindex = self.get_power_index(irreducible=False)
Marco Selig's avatar
Marco Selig committed
1167 1168
#        return list(np.unravel_index(np.unique(pindex,return_index=True,return_inverse=False)[1],pindex.shape,order='C')) ## < version 0.4
        return np.unique(pindex,return_index=True,return_inverse=False)[1]
1169

1170
    def set_power_indices(self,**kwargs):
Marco Selig's avatar
Marco Selig committed
1171
        """
1172 1173 1174 1175 1176 1177
            Sets the (un)indexing objects for spectral indexing internally.

            Parameters
            ----------
            log : bool
                Flag specifying if the binning is performed on logarithmic
1178 1179 1180
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
1181
            nbin : integer
1182 1183
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
1184 1185
                by default no binning is done (default: None).
            binbounds : {list, array}
1186 1187 1188
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
1189 1190 1191 1192 1193

            Returns
            -------
            None

1194
            See Also
1195 1196
            --------
            get_power_indices
Marco Selig's avatar
Marco Selig committed
1197 1198

        """
1199
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'set_power_indices'."))
1200

1201 1202 1203
    def get_power_indices(self,**kwargs):
        """
            Provides the (un)indexing objects for spectral indexing.
1204

1205 1206 1207
            Provides one-dimensional arrays containing the scales of the
            spectral bands and the numbers of modes per scale, and an array
            giving for each component of a field the corresponding index of a
Marco Selig's avatar
Marco Selig committed
1208
            power spectrum as well as an Unindexing array.
1209 1210 1211 1212 1213

            Parameters
            ----------
            log : bool
                Flag specifying if the binning is performed on logarithmic
1214 1215 1216
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
1217
            nbin : integer
1218 1219
                Number of used bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
1220 1221
                by default no binning is done (default: None).
            binbounds : {list, array}
1222 1223 1224
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

            Returns
            -------
            kindex : numpy.ndarray
                Scale of each spectral band.
            rho : numpy.ndarray
                Number of modes per scale represented in the discretization.
            pindex : numpy.ndarray
                Indexing array giving the power spectrum index for each
                represented mode.
Marco Selig's avatar
Marco Selig committed
1235 1236
            pundex : numpy.ndarray
                Unindexing array undoing power spectrum indexing.
1237 1238 1239 1240 1241 1242

            Notes
            -----
            The ``kindex`` and ``rho`` are each one-dimensional arrays.
            The indexing array is of the same shape as a field living in this
            space and contains the indices of the associated bands.
Marco Selig's avatar
Marco Selig committed
1243 1244
            Indexing with the unindexing array undoes the indexing with the
            indexing array; i.e., ``power == power[pindex].flatten()[pundex]``.
1245

1246
            See Also
1247 1248 1249 1250 1251 1252
            --------
            set_power_indices

        """
        self.set_power_indices(**kwargs)
        return self.power_indices.get("kindex"),self.power_indices.get("rho"),self.power_indices.get("pindex"),self.power_indices.get("pundex")
1253

Marco Selig's avatar
Marco Selig committed
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_shape(self,x):
        """
            Shapes an array of valid field values correctly, according to the
            specifications of the space instance.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values to be put into shape.

            Returns
            -------
            y : numpy.ndarray
                Correctly shaped array.
        """
        x = np.array(x)

        if(np.size(x)!=self.dim(split=False)):
            raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(x))+" <> "+str(self.dim(split=False))+" )."))
#        elif(not np.all(np.array(np.shape(x))==self.dim(split=True))):
#            about.warnings.cprint("WARNING: reshaping forced.")

        return x.reshape(self.dim(split=True),order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_values(self,x,extend=True):
        """
            Computes valid field values from a given object, according to the
            constraints from the space instance.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray
                Array containing the valid field values.

            Other parameters
            ----------------
            extend : bool, *optional*
                Whether a scalar is extented to a constant array or not
                (default: True).
        """
        if(isinstance(x,field)):
            if(self==x.domain):
                if(self.datatype is not x.domain.datatype):
                    raise TypeError(about._errors.cstring("ERROR: inequal data types ( '"+str(np.result_type(self.datatype))+"' <> '"+str(np.result_type(x.domain.datatype))+"' )."))
                else:
                    x = x.val
            else:
                raise ValueError(about._errors.cstring("ERROR: inequal domains."))
        else:
            if(np.size(x)==1):
                if(extend):
                    x = self.datatype(x)*np.ones(self.dim(split=True),dtype=self.datatype,order='C')
                else:
                    if(np.isscalar(x)):
                        x = np.array([x],dtype=self.datatype)
                    else:
                        x = np.array(x,dtype=self.datatype)
            else:
                x = self.enforce_shape(np.array(x,dtype=self.datatype))

        ## check finiteness
        if(not np.all(np.isfinite(x))):
            about.warnings.cprint("WARNING: infinite value(s).")

        return x

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_random_values(self,**kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Marco Selig's avatar
Marco Selig committed
1360
            spec : {scalar, list, numpy.ndarray, nifty.field, function}, *optional*
Marco Selig's avatar
Marco Selig committed
1361
                Power spectrum (default: 1).
1362 1363 1364 1365 1366
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
            codomain : nifty.space, *optional*
                A compatible codomain with power indices (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.arguments(self,**kwargs)

        if(arg is None):
            x = np.zeros(self.dim(split=True),dtype=self.datatype,order='C')

        elif(arg[0]=="pm1"):
            x = random.pm1(datatype=self.datatype,shape=self.dim(split=True))

        elif(arg[0]=="gau"):
            x = random.gau(datatype=self.datatype,shape=self.dim(split=True),mean=None,dev=arg[2],var=arg[3])

        elif(arg[0]=="uni"):
            x = random.uni(datatype=self.datatype,shape=self.dim(split=True),vmin=arg[1],vmax=arg[2])

        else:
            raise KeyError(about._errors.cstring("ERROR: unsupported random key '"+str(arg[0])+"'."))

        return x

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def check_codomain(self,codomain):
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.
        """
        if(not isinstance(codomain,space)):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

        if(self==codomain):
            return True

        return False

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_codomain(self,**kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.
        """
1457
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_meta_volume(self,total=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
        """
1481
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_meta_volume'."))
Marco Selig's avatar
Marco Selig committed
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_weight(self,x,power=1):
        """
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))
        ## weight
        return x*self.vol**power

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_dot(self,x,y):
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
1522
            dot : scalar
Marco Selig's avatar
Marco Selig committed
1523 1524 1525 1526 1527
                Inner product of the two arrays.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))
        y = self.enforce_shape(np.array(y,dtype=self.datatype))
        ## inner product
1528 1529
        dot = np.dot(np.conjugate(x),y,out=None)
        if(np.isreal(dot)):
1530
            return np.asscalar(np.real(dot))
1531 1532
        else:
            return dot
Marco Selig's avatar
Marco Selig committed
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_transform(self,x,codomain=None,**kwargs):
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                Target space to which the transformation shall map
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array

            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
        """
        x = self.enforce_shape(np.array(x,dtype=self.datatype))

        if(codomain is None):
            return x ## T == id

        ## check codomain
        self.check_codomain(codomain) ## a bit pointless

        if(self==codomain):
            return x ## T == id

        else:
            raise ValueError(about._errors.cstring("ERROR: unsupported transformation."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_smooth(self,x,sigma=0,**kwargs):
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.

            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
        """
1597
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_power(self,x,**kwargs):
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
1621 1622 1623
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
Marco Selig's avatar
Marco Selig committed
1624 1625
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).

Marco Selig's avatar
Marco Selig committed
1644
        """
1645
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_plot(self,x,**kwargs):
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
1689 1690 1691
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
Marco Selig's avatar
Marco Selig committed
1692 1693 1694 1695 1696 1697
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
1715 1716
            iter : int, *optional*
                Number of iterations (default: 0).
1717

Marco Selig's avatar
Marco Selig committed
1718
        """
1719
        raise NotImplementedError(about._errors.cstring("ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
1720 1721 1722 1723

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
1724
        return "<nifty_core.space>"
Marco Selig's avatar
Marco Selig committed
1725 1726

    def __str__(self):
1727
        return "nifty_core.space instance\n- para     = "+str(self.para)+"\n- datatype = numpy."+str(np.result_type(self.datatype))
Marco Selig's avatar
Marco Selig committed
1728 1729 1730 1731 1732 1733 1734 1735 1736

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __len__(self):
        return int(self.dim(split=False))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def _meta_vars(self): ## > captures all nonstandard properties
1737
        mars = np.array([ii[1] for ii in vars(self).iteritems() if ii[0] not in ["para","datatype","discrete","vol","power_indices"]],dtype=np.object)
Marco Selig's avatar
Marco Selig committed
1738 1739 1740 1741 1742 1743 1744
        if(np.size(mars)==0):
            return None
        else:
            return mars

    def __eq__(self,x): ## __eq__ : self == x
        if(isinstance(x,space)):
1745
            if(isinstance(x,type(self)))and(np.all(self.para==x.para))and(self.discrete==x.discrete)and(np.all(self.vol==x.vol))and(np.all(self._meta_vars()==x._meta_vars())): ## data types are ignored
Marco Selig's avatar
Marco Selig committed
1746 1747 1748 1749 1750
                return True
        return False

    def __ne__(self,x): ## __ne__ : self <> x
        if(isinstance(x,space)):
1751
            if(not isinstance(x,type(self)))or(np.any(self.para!=x.para))or(self.discrete!=x.discrete)or(np.any(self.vol!=x.vol))or(np.any(self._meta_vars()!=x._meta_vars())): ## data types are ignored
Marco Selig's avatar
Marco Selig committed
1752 1753 1754 1755 1756
                return True
        return False

    def __lt__(self,x): ## __lt__ : self < x
        if(isinstance(x,space)):
1757
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1758
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
1759
            elif(self.discrete==x.discrete): ## data types are ignored
1760
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1761 1762 1763 1764
                    if(self.para[ii]<x.para[ii]):
                        return True
                    elif(self.para[ii]>x.para[ii]):
                        return False
1765
                for ii in xrange(np.size(self.vol)):
1766 1767 1768 1769
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    elif(self.vol[ii]>x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1770 1771
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1772
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1773 1774 1775 1776 1777 1778 1779 1780
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        break
        return False

    def __le__(self,x): ## __le__ : self <= x
        if(isinstance(x,space)):
1781
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1782 1783
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1784
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1785 1786 1787 1788
                    if(self.para[ii]<x.para[ii]):
                        return True
                    if(self.para[ii]>x.para[ii]):
                        return False
1789
                for ii in xrange(np.size(self.vol)):
1790 1791 1792 1793
                    if(self.vol[ii]<x.vol[ii]):
                        return True
                    if(self.vol[ii]>x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1794 1795
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1796
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1797 1798 1799 1800 1801 1802 1803 1804 1805
                    if(np.all(s_mars[ii]<x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]>x_mars[ii])):
                        return False
                return True
        return False

    def __gt__(self,x): ## __gt__ : self > x
        if(isinstance(x,space)):
1806
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1807 1808
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1809
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1810 1811 1812 1813
                    if(self.para[ii]>x.para[ii]):
                        return True
                    elif(self.para[ii]<x.para[ii]):
                        break
1814
                for ii in xrange(np.size(self.vol)):
1815 1816 1817 1818
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    elif(self.vol[ii]<x.vol[ii]):
                        break
Marco Selig's avatar
Marco Selig committed
1819 1820
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1821
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1822 1823 1824 1825 1826 1827 1828 1829
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        break
        return False

    def __ge__(self,x): ## __ge__ : self >= x
        if(isinstance(x,space)):
1830
            if(not isinstance(x,type(self)))or(np.size(self.para)!=np.size(x.para))or(np.size(self.vol)!=np.size(x.vol)):
Marco Selig's avatar
Marco Selig committed
1831 1832
                raise ValueError(about._errors.cstring("ERROR: incomparable spaces."))
            elif(self.discrete==x.discrete): ## data types are ignored
1833
                for ii in xrange(np.size(self.para)):
Marco Selig's avatar
Marco Selig committed
1834 1835 1836 1837
                    if(self.para[ii]>x.para[ii]):
                        return True
                    if(self.para[ii]<x.para[ii]):
                        return False
1838
                for ii in xrange(np.size(self.vol)):
1839 1840 1841 1842
                    if(self.vol[ii]>x.vol[ii]):
                        return True
                    if(self.vol[ii]<x.vol[ii]):
                        return False
Marco Selig's avatar
Marco Selig committed
1843 1844
                s_mars = self._meta_vars()
                x_mars = x._meta_vars()
1845
                for ii in xrange(np.size(s_mars)):
Marco Selig's avatar
Marco Selig committed
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
                    if(np.all(s_mars[ii]>x_mars[ii])):
                        return True
                    elif(np.any(s_mars[ii]<x_mars[ii])):
                        return False
                return True
        return False

##=============================================================================



##-----------------------------------------------------------------------------

class point_space(space):
    """
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/

        NIFTY subclass for unstructured spaces.

        Unstructured spaces are lists of values without any geometrical
        information.

        Parameters
        ----------
        num : int
            Number of points.
        datatype : numpy.dtype, *optional*
            Data type of the field values (default: None).

        Attributes
        ----------
        para : numpy.ndarray
            Array containing the number of points.
        datatype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
    """
    def __init__(self,num,datatype=None):
        """
            Sets the attributes for a point_space class instance.

            Parameters
            ----------
            num : int
                Number of points.
            datatype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None.
        """
        ## check parameter
        if(num<1):
            raise ValueError(about._errors.cstring("ERROR: nonpositive number."))
        self.para = np.array([num],dtype=np.int)

        ## check datatype
        if(datatype is None):
            datatype = np.float64
        elif(datatype not in [np.int8,np.int16,np.int32,np.int64,np.float16,np.float32,np.float64,np.complex64,np.complex128]):
            about.warnings.cprint("WARNING: data type set to default.")
            datatype = np.float64
        self.datatype = datatype

        self.discrete = True
        self.vol = np.real(np.array([1],dtype=self.datatype))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def num(self):
        """
            Returns the number of points.

            Returns
            -------
            num : int
                Number of points.
        """
        return self.para[0]

    def dim(self,split=False):
        """
            Computes the dimension of the space, i.e.\  the number of points.

            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).

            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
        ## dim = num
        if(split):
            return np.array([self.para[0]],dtype=np.int)
        else:
            return self.para[0]

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def dof(self):
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
        ## dof ~ dim
1972
        if(issubclass(self.datatype,np.complexfloating)):
Marco Selig's avatar
Marco Selig committed
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
            return 2*self.para[0]
        else:
            return self.para[0]

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def enforce_power(self,spec,**kwargs):
        """
            Raises an error since the power spectrum is ill-defined for point
            spaces.
        """
        raise AttributeError(about._errors.cstring("ERROR: power spectra ill-defined for (unstructured) point spaces."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1988 1989 1990 1991 1992 1993 1994
#    def get_power_index(self,irreducible=False): ## TODO: remove in future version
#        """
#            **DEPRECATED** Raises an error since the power spectrum is
#            ill-defined for point spaces.
#        """
#        about.warnings.cprint("WARNING: 'get_power_index' is deprecated.")
#        raise AttributeError(about._errors.cstring("ERROR: power spectra ill-defined for (unstructured) point spaces."))
Marco Selig's avatar
Marco Selig committed
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    def set_power_indices(self,**kwargs):
        """
            Raises
            ------
            AttributeError
                Always. -- The power spectrum is ill-defined for point spaces.

        """
        raise AttributeError(about._errors.cstring("ERROR: power spectra indexing ill-defined."))

Marco Selig's avatar
Marco Selig committed
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_codomain(self,**kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, in this case another instance of
            :py:class:`point_space` with the same properties.

            Returns
            -------
            codomain : nifty.point_space
                A compatible codomain.
        """
        return point_space(self.para[0],datatype=self.datatype) ## == self

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_meta_volume(self,total=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            Since point spaces are unstructured, the meta volume of each
            component is one, the total meta volume of the space is the number
            of points.
        """
        if(total):
            return self.dim(split=False)
        else:
            return np.ones(self.dim(split=True),dtype=self.vol.dtype,order='C')

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_smooth(self,x,**kwargs):
        """
            Raises an error since smoothing is ill-defined on an unstructured
            space.
        """
        raise AttributeError(about._errors.cstring("ERROR: smoothing ill-defined for (unstructured) point space."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def calc_power(self,x,**kwargs):
        """
            Raises an error since the power spectrum is ill-defined for point
            spaces.
        """
        raise AttributeError(about._errors.cstring("ERROR: power spectra ill-defined for (unstructured) point space."))

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def get_plot(self,x,title="",vmin=None,vmax=None,unit="",norm=None,other=None,legend=False,**kwargs):
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
2105 2106 2107 2108
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

Marco Selig's avatar
Marco Selig committed
2109
        """
2110
        if(not pl.isinteractive())and(not bool(kwargs.get("save",False))):
Marco Selig's avatar
Marco Selig committed
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
            about.warnings.cprint("WARNING: interactive mode off.")

        x = self.enforce_shape(np.array(x,dtype=self.datatype))

        fig = pl.figure(num=None,figsize=(6.4,4.8),dpi=None,facecolor=None,edgecolor=None,frameon=False,FigureClass=pl.Figure)
        ax0 = fig.add_axes([0.12,0.12,0.82,0.76])

        xaxes = np.arange(self.para[0],dtype=np.int)
        if(vmin is None):
            if(np.iscomplexobj(x)):
                vmin = min(np.min(np.absolute(x),axis=None,out=None),np.min(np.real(x),axis=None,out=None),np.min(np.imag(x),axis=None,out=None))
            else:
                vmin = np.min(x,axis=None,out=None)
        if(vmax is None):
            if(np.iscomplexobj(x)):
                vmax = max(np.max(np.absolute(x),axis=None,out=None),np.max(np.real(x),axis=None,out=None),np.max(np.imag(x),axis=None,out=None))
            else:
                vmax = np.max(x,axis=None,out=None)

        if(norm=="log")and(vmin<=0):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))

        if(np.iscomplexobj(x)):
            ax0.scatter(xaxes,np.absolute(x),s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (absolute)",linewidths=None,verts=None,zorder=1)
            ax0.scatter(xaxes,np.real(x),s=20,color=[0.0,0.5,0.0],marker='s',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (real part)",linewidths=None,verts=None,facecolor="none",zorder=1)
            ax0.scatter(xaxes,np.imag(x),s=20,color=[0.0,0.5,0.0],marker='D',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph (imaginary part)",linewidths=None,verts=None,facecolor="none",zorder=1)
            if(legend):
                ax0.legend()
        elif(other is not None):
            ax0.scatter(xaxes,x,s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph 0",linewidths=None,verts=None,zorder=1)
            if(isinstance(other,tuple)):
                other = [self.enforce_values(xx,extend=True) for xx in other]
            else:
                other = [self.enforce_values(other,extend=True)]
            imax = max(1,len(other)-1)
2146
            for ii in xrange(len(other)):
Marco Selig's avatar
Marco Selig committed
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
                ax0.scatter(xaxes,other[ii],s=20,color=[max(0.0,1.0-(2*ii/imax)**2),0.5*((2*ii-imax)/imax)**2,max(0.0,1.0-(2*(ii-imax)/imax)**2)],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph "+str(ii),linewidths=None,verts=None,zorder=-ii)
            if(legend):
                ax0.legend()
        else:
            ax0.scatter(xaxes,x,s=20,color=[0.0,0.5,0.0],marker='o',cmap=None,norm=None,vmin=None,vmax=None,alpha=None,label="graph 0",linewidths=None,verts=None,zorder=1)

        ax0.set_xlim(xaxes[0],xaxes[-1])
        ax0.set_xlabel("index")
        ax0.set_ylim(vmin,vmax)
        if(norm=="log"):
            ax0.set_yscale('log')

        if(unit):
            unit = " ["+unit+"]"
        ax0.set_ylabel("values"+unit)
        ax0.set_title(title)

2164 2165 2166
        if(bool(kwargs.get("save",False))):
            fig.savefig(str(kwargs.get("save")),dpi=None,facecolor=None,edgecolor=None,orientation='portrait',papertype=None,format=None,transparent=False,bbox_inches=None,pad_inches=0.1)
            pl.close(fig)
2167 2168
        else:
            fig.canvas.draw()
Marco Selig's avatar
Marco Selig committed
2169 2170 2171 2172

    ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    def __repr__(self):
2173
        return "<nifty_core.point_space>"
Marco Selig's avatar
Marco Selig committed
2174 2175

    def __str__(self):
2176
        return "nifty_core.point_space instance\n- num      = "+str(self.para[0])+"\n- datatype = numpy."+str(np.result_type(self.datatype))
Marco Selig's avatar
Marco Selig committed
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

##-----------------------------------------------------------------------------



##-----------------------------------------------------------------------------

class rg_space(space):
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
2190
        ..          /______/
Marco Selig's avatar
Marco Selig committed
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
Marco Selig's avatar
Marco Selig committed