gridder.py 4.71 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

Philipp Arras's avatar
Philipp Arras committed
18 19 20 21 22
import numpy as np

from ..domain_tuple import DomainTuple
from ..domains.rg_space import RGSpace
from ..domains.unstructured_domain import UnstructuredDomain
23
from ..fft import hartley
Philipp Arras's avatar
Philipp Arras committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from ..operators.linear_operator import LinearOperator
from ..sugar import from_global_data, makeDomain


class GridderMaker(object):
    def __init__(self, domain, eps=1e-15):
        domain = makeDomain(domain)
        if (len(domain) != 1 or not isinstance(domain[0], RGSpace) or
                not len(domain.shape) == 2):
            raise ValueError("need domain with exactly one 2D RGSpace")
        nu, nv = domain.shape
        if nu % 2 != 0 or nv % 2 != 0:
            raise ValueError("dimensions must be even")
        rat = 3 if eps < 1e-11 else 2
        nu2, nv2 = rat*nu, rat*nv

        nspread = int(-np.log(eps)/(np.pi*(rat-1)/(rat-.5)) + .5) + 1
        nu2 = max([nu2, 2*nspread])
        nv2 = max([nv2, 2*nspread])
        r2lamb = rat*rat*nspread/(rat*(rat-.5))

        oversampled_domain = RGSpace(
            [nu2, nv2], distances=[1, 1], harmonic=False)

        self._nspread = nspread
        self._r2lamb = r2lamb
        self._rest = _RestOperator(domain, oversampled_domain, r2lamb)

    def getReordering(self, uv):
53
        from nifty_gridder import peanoindex
Philipp Arras's avatar
Philipp Arras committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        nu2, nv2 = self._rest._domain.shape
        return peanoindex(uv, nu2, nv2)

    def getGridder(self, uv):
        return RadioGridder(self._rest.domain, self._nspread, self._r2lamb, uv)

    def getRest(self):
        return self._rest

    def getFull(self, uv):
        return self.getRest() @ self.getGridder(uv)


class _RestOperator(LinearOperator):
    def __init__(self, domain, oversampled_domain, r2lamb):
        self._domain = makeDomain(oversampled_domain)
        self._target = domain
        nu, nv = domain.shape
        nu2, nv2 = oversampled_domain.shape

        # compute deconvolution operator
        rng = np.arange(nu)
        k = np.minimum(rng, nu-rng)
        c = np.pi*r2lamb/nu2**2
        self._deconv_u = np.roll(np.exp(c*k**2), -nu//2).reshape((-1, 1))
        rng = np.arange(nv)
        k = np.minimum(rng, nv-rng)
        c = np.pi*r2lamb/nv2**2
82 83
        self._deconv_v = np.roll(
            np.exp(c*k**2)/r2lamb, -nv//2).reshape((1, -1))
Philipp Arras's avatar
Philipp Arras committed
84 85 86 87 88
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        nu, nv = self._target.shape
89
        res = x.to_global_data()
Philipp Arras's avatar
Philipp Arras committed
90
        if mode == self.TIMES:
91
            res = hartley(res)
Philipp Arras's avatar
Philipp Arras committed
92 93 94 95 96
            res = np.roll(res, (nu//2, nv//2), axis=(0, 1))
            res = res[:nu, :nv]
            res *= self._deconv_u
            res *= self._deconv_v
        else:
97
            res = res*self._deconv_u
Philipp Arras's avatar
Philipp Arras committed
98 99
            res *= self._deconv_v
            nu2, nv2 = self._domain.shape
100
            res = np.pad(res, ((0, nu2-nu), (0, nv2-nv)), mode='constant',
Philipp Arras's avatar
Philipp Arras committed
101 102
                         constant_values=0)
            res = np.roll(res, (-nu//2, -nv//2), axis=(0, 1))
103
            res = hartley(res)
Philipp Arras's avatar
Philipp Arras committed
104 105 106 107 108 109 110 111 112 113 114 115 116
        return from_global_data(self._tgt(mode), res)


class RadioGridder(LinearOperator):
    def __init__(self, target, nspread, r2lamb, uv):
        self._domain = DomainTuple.make(
            UnstructuredDomain((uv.shape[0],)))
        self._target = DomainTuple.make(target)
        self._capability = self.TIMES | self.ADJOINT_TIMES
        self._nspread, self._r2lamb = int(nspread), float(r2lamb)
        self._uv = uv  # FIXME: should we write-protect this?

    def apply(self, x, mode):
Martin Reinecke's avatar
Martin Reinecke committed
117 118
        from nifty_gridder import (to_grid, to_grid_post,
                                   from_grid, from_grid_pre)
Philipp Arras's avatar
Philipp Arras committed
119 120 121 122
        self._check_input(x, mode)
        nu2, nv2 = self._target.shape
        x = x.to_global_data()
        if mode == self.TIMES:
123
            res = to_grid(self._uv, x, nu2, nv2, self._nspread, self._r2lamb)
Martin Reinecke's avatar
Martin Reinecke committed
124
            res = to_grid_post(res)
Philipp Arras's avatar
Philipp Arras committed
125
        else:
Martin Reinecke's avatar
Martin Reinecke committed
126
            x = from_grid_pre(x)
127
            res = from_grid(self._uv, x, nu2, nv2, self._nspread, self._r2lamb)
Philipp Arras's avatar
Philipp Arras committed
128
        return from_global_data(self._tgt(mode), res)