numpy_do.py 3.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
21
# Data object module for NIFTy that uses simple numpy ndarrays.

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22
from numpy import empty, empty_like, exp, full, log
23
from numpy import ndarray as data_object
Philipp Arras's avatar
Philipp Arras committed
24
25
from numpy import ones, sqrt, tanh, vdot, zeros

Martin Reinecke's avatar
Martin Reinecke committed
26
27
from .random import Random

Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
32
33
34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
           "redistribute", "default_distaxis", "is_numpy",
35
           "lock", "locked", "uniform_full", "to_global_data_rw"]
Martin Reinecke's avatar
Martin Reinecke committed
36

Martin Reinecke's avatar
Martin Reinecke committed
37
38
39
40
ntask = 1
rank = 0
master = True

41

Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
45
def is_numpy():
    return True


Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    res = np.array(object, dtype=dtype, copy=copy)
    if set_locked:
        lock(res)
    return res
Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
63
64


def from_random(random_type, shape, dtype=np.float64, **kwargs):
    generator_function = getattr(Random, random_type)
    return generator_function(dtype=dtype, shape=shape, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
65

Martin Reinecke's avatar
Martin Reinecke committed
66

Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
70
def local_data(arr):
    return arr


71
72
73
74
def ibegin_from_shape(glob_shape, distaxis=-1):
    return (0,)*len(glob_shape)


Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
79
80
81
82
def ibegin(arr):
    return (0,)*arr.ndim


def np_allreduce_sum(arr):
    return arr


83
84
85
86
def np_allreduce_min(arr):
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
87
88
89
90
def np_allreduce_max(arr):
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
91
def distaxis(arr):
Martin Reinecke's avatar
Martin Reinecke committed
92
    return -1
Martin Reinecke's avatar
Martin Reinecke committed
93
94


Martin Reinecke's avatar
Martin Reinecke committed
95
def from_local_data(shape, arr, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
96
    if tuple(shape) != arr.shape:
Martin Reinecke's avatar
Martin Reinecke committed
97
98
99
100
        raise ValueError
    return arr


101
def from_global_data(arr, sum_up=False, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
105
def to_global_data(arr):
Martin Reinecke's avatar
Martin Reinecke committed
106
107
108
    return arr


109
110
111
112
def to_global_data_rw(arr):
    return arr.copy()


Martin Reinecke's avatar
Martin Reinecke committed
113
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
114
115
116
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
117
def default_distaxis():
Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
    return -1


121
def local_shape(glob_shape, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
122
    return glob_shape
123
124
125
126
127
128
129
130


def lock(arr):
    arr.flags.writeable = False


def locked(arr):
    return not arr.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
131
132
133
134


def uniform_full(shape, fill_value, dtype=None, distaxis=-1):
    return np.broadcast_to(fill_value, shape)