plot.py 9.23 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from __future__ import division
import numpy as np
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
15

Martin Reinecke's avatar
Martin Reinecke committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
    res = np.full(shape=(ysize, xsize), fill_value=np.nan,
                  dtype=np.float64)
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
35

Martin Reinecke's avatar
Martin Reinecke committed
36
37
38
39
40
41
42
43
44
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
45

Martin Reinecke's avatar
Martin Reinecke committed
46
def _makeplot(name):
47
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
    if name is None:
        plt.show()
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
52
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
53
54
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
55
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
56
57
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
58
59
60
61
62
63
64
65
66
67
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
68
69
70
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
71

Martin Reinecke's avatar
Martin Reinecke committed
72
73
def _limit_xy(**kwargs):
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
74
    x1, x2, y1, y2 = plt.axis()
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
    x1 = _get_kw("xmin", x1, **kwargs)
    x2 = _get_kw("xmax", x2, **kwargs)
    y1 = _get_kw("ymin", y1, **kwargs)
    y2 = _get_kw("xmax", y2, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
79
80
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
81

Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
86
87
88
89
90
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
137
138
139

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
140
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
141
142
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
143
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
144

Martin Reinecke's avatar
Martin Reinecke committed
145

Martin Reinecke's avatar
Martin Reinecke committed
146
147
148
149
150
151
def _get_kw(kwname, kwdefault=None, **kwargs):
    if kwargs.get(kwname) is not None:
        return kwargs.get(kwname)
    return kwdefault


Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
152
def plot(f, **kwargs):
153
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
154
    _register_cmaps()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
155
    if not isinstance(f, Field):
Martin Reinecke's avatar
Martin Reinecke committed
156
        raise TypeError("incorrect data type")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
157
    if len(f.domain) != 1:
Martin Reinecke's avatar
Martin Reinecke committed
158
159
160
        raise ValueError("input field must have exactly one domain")

    dom = f.domain[0]
Martin Reinecke's avatar
Martin Reinecke committed
161
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
162
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
163

Martin Reinecke's avatar
Martin Reinecke committed
164
165
    xsize = _get_kw("xsize", 6, **kwargs)
    ysize = _get_kw("ysize", 6, **kwargs)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
166
    fig.set_size_inches(xsize, ysize)
Martin Reinecke's avatar
Martin Reinecke committed
167
168
169
170
    ax.set_title(_get_kw("title", "", **kwargs))
    ax.set_xlabel(_get_kw("xlabel", "", **kwargs))
    ax.set_ylabel(_get_kw("ylabel", "", **kwargs))
    cmap = _get_kw("colormap", plt.rcParams['image.cmap'], **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
171
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
172
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
173
174
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
175
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
176
177
            ycoord = f.val
            plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
178
179
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
180
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
181
        elif len(dom.shape) == 2:
Martin Reinecke's avatar
Martin Reinecke committed
182
183
184
185
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
186
187
188
189
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
            im = ax.imshow(f.val, extent=[xc[0], xc[-1], yc[0], yc[-1]],
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
190
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
191
192
193
194
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
195
196
197
            plt.colorbar(im)
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
198
199
            return
    elif isinstance(dom, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
200
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
201
202
203
204
205
        ycoord = f.val
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
        plt.plot(xcoord, ycoord)
Martin Reinecke's avatar
Martin Reinecke committed
206
207
        _limit_xy(**kwargs)
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
208
209
210
211
212
213
214
215
216
217
218
219
        return
    elif isinstance(dom, HPSpace):
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.val.size//12)), "RING")
        res[mask] = f.val[base.ang2pix(ptg)]
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
220
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
221
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
222
223
        plt.colorbar(orientation="horizontal")
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
224
225
226
227
228
229
230
231
232
233
234
235
236
        return
    elif isinstance(dom, GLSpace):
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
        res[mask] = f.val[ilat*dom.nlon + ilon]

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
237
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
238
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
239
240
        plt.colorbar(orientation="horizontal")
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
241
242
243
        return

    raise ValueError("Field type not(yet) supported")