rg_space.py 12.4 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
51
52
53
54
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
55
56
57
58
        zerocenter : {bool, numpy.ndarray} *optional*
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
            (default: False).
Theo Steininger's avatar
Theo Steininger committed
59
60
61
62
63
64
65
66
67
68
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
69
            (default: False).
Marco Selig's avatar
Marco Selig committed
70
71
72

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
73
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
74
75
76
77
78
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
79
80
81
82
83
84
85
86
87
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
88

Marco Selig's avatar
Marco Selig committed
89
90
    """

91
92
    # ---Overwritten properties and methods---

93
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
94
                 harmonic=False):
95
96
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
97
        super(RGSpace, self).__init__()
98

99
100
101
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
102

103
104
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
105
106
107
108
109
110
111
112
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
113
        anti_hermitian_part = (x-hermitian_part)
114
115
116
117
118
119
120

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

121
122
        return (hermitian_part, anti_hermitian_part)

123
124
125
126
127
128
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        # If the dtype of the input is complex, the fixed points lose the power
        # of their imaginary-part (or real-part, respectively). Therefore
        # the factor of sqrt(2) also applies there
        if not issubclass(hermitian_part.dtype.type, np.complexfloating):
            # The fixed points of the point inversion must not be averaged.
            # Hence one must divide out the sqrt(2) again
            # -> Get the middle index of the array
            mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
            dimensions = mid_index.size
            # Use ndindex to iterate over all combinations of zeros and the
            # mid_index in order to correct all fixed points.
            if axes is None:
                axes = xrange(dimensions)

            ndlist = [2 if i in axes else 1 for i in xrange(dimensions)]
            ndlist = tuple(ndlist)
            for i in np.ndindex(ndlist):
                temp_index = tuple(i * mid_index)
                hermitian_part[temp_index] /= np.sqrt(2)
                anti_hermitian_part[temp_index] /= np.sqrt(2)
149
150
        return hermitian_part, anti_hermitian_part

151
    def _hermitianize_inverter(self, x, axes):
152
        shape = x.shape
153
        # calculate the number of dimensions the input array has
154
        dimensions = len(shape)
155
156
157
158
159
160
161
162
163
164
165
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
166
167
168
169
            if shape[i] % 2 == 0:
                slice_picker[i] = slice(1, None, None)
            else:
                slice_picker[i] = slice(None)
170
171
172
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
173
174
175
176
            if shape[i] % 2 == 0:
                slice_inverter[i] = slice(None, 0, -1)
            else:
                slice_inverter[i] = slice(None, None, -1)
177
178
179
180
181
182
183
184
185
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

186
187
    # ---Mandatory properties and methods---

188
189
190
191
    def __repr__(self):
        return ("RGSpace(shape=%r, zerocenter=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.zerocenter, self.distances, self.harmonic))

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
212
                              harmonic=self.harmonic)
213
214

    def weight(self, x, power=1, axes=None, inplace=False):
215
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
216
217
218
219
220
221
222
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

223
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
224
225
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
226

Theo Steininger's avatar
Theo Steininger committed
227
228
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
229
230
231
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
theos's avatar
theos committed
232

Theo Steininger's avatar
Theo Steininger committed
233
234
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
235
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
236
237
            A d2o containing the distances.

theos's avatar
theos committed
238
        """
Theo Steininger's avatar
Theo Steininger committed
239

theos's avatar
theos committed
240
241
242
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
243
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
244
245
246
247
248
249
250
251
252
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
253
254
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

270
271
        dists = (cords[0] - shape[0]//2)*dk[0]
        dists *= dists
theos's avatar
theos committed
272
        # apply zerocenterQ shift
273
274
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
275
276
277
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
278
279
            temp = (cords[ii] - shape[ii] // 2) * dk[ii]
            temp *= temp
280
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
281
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
282
283
284
285
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

286
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
287
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
theos's avatar
theos committed
288

289
290
291
292
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
293
294
295
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
296
        """
Theo Steininger's avatar
Theo Steininger committed
297

298
299
300
301
        return self._distances

    @property
    def zerocenter(self):
302
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
303

304
305
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
306
307
308
309
310
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

311
        """
Theo Steininger's avatar
Theo Steininger committed
312

313
314
315
316
317
318
319
320
321
322
323
324
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
325
                temp = np.ones_like(self.shape, dtype=np.float64)
326
            else:
Martin Reinecke's avatar
Martin Reinecke committed
327
                temp = 1 / np.array(self.shape, dtype=np.float64)
328
        else:
Martin Reinecke's avatar
Martin Reinecke committed
329
            temp = np.empty(len(self.shape), dtype=np.float64)
330
331
332
333
334
335
336
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
337
338
339
340

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
341
342
343
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
344
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
345

346
347
348
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
349
    def _from_hdf5(cls, hdf5_group, repository):
350
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
351
352
353
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
354
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
355
            )
356
        return result