nifty_utilities.py 7.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

Martin Reinecke's avatar
Martin Reinecke committed
19
20
from builtins import next
from builtins import range
Theo Steininger's avatar
Theo Steininger committed
21
import numpy as np
22
from itertools import product
Martin Reinecke's avatar
Martin Reinecke committed
23
import itertools
24

25
26
def get_slice_list(shape, axes):
    """
Theo Steininger's avatar
Theo Steininger committed
27
28
    Helper function which generates slice list(s) to traverse over all
    combinations of axes, other than the selected axes.
Jait Dixit's avatar
Jait Dixit committed
29
30
31
32

    Parameters
    ----------
    shape: tuple
Theo Steininger's avatar
Theo Steininger committed
33
        Shape of the data array to traverse over.
Jait Dixit's avatar
Jait Dixit committed
34
    axes: tuple
Theo Steininger's avatar
Theo Steininger committed
35
        Axes which should not be iterated over.
Jait Dixit's avatar
Jait Dixit committed
36
37
38
39
40
41
42
43
44
45
46
47

    Yields
    -------
    list
        The next list of indices and/or slice objects for each dimension.

    Raises
    ------
    ValueError
        If shape is empty.
    ValueError
        If axes(axis) does not match shape.
48
    """
Theo Steininger's avatar
Theo Steininger committed
49

50
    if not shape:
51
        raise ValueError("shape cannot be None.")
52

53
54
    if axes:
        if not all(axis < len(shape) for axis in axes):
55
            raise ValueError("axes(axis) does not match shape.")
56
        axes_select = [0 if x in axes else 1 for x, y in enumerate(shape)]
Jait Dixit's avatar
Jait Dixit committed
57
        axes_iterables = \
Martin Reinecke's avatar
Martin Reinecke committed
58
            [list(range(y)) for x, y in enumerate(shape) if x not in axes]
59
60
61
62
63
        for index in product(*axes_iterables):
            it_iter = iter(index)
            slice_list = [
                next(it_iter)
                if axis else slice(None, None) for axis in axes_select
Jait Dixit's avatar
Jait Dixit committed
64
                ]
65
66
67
68
            yield slice_list
    else:
        yield [slice(None, None)]
        return
Theo Steininger's avatar
Theo Steininger committed
69

Theo Steininger's avatar
Theo Steininger committed
70

71
def cast_axis_to_tuple(axis, length=None):
72
73
74
75
76
77
    if axis is None:
        return None
    try:
        axis = tuple(int(item) for item in axis)
    except(TypeError):
        if np.isscalar(axis):
Jait Dixit's avatar
Jait Dixit committed
78
            axis = (int(axis),)
79
80
        else:
            raise TypeError(
81
                "Could not convert axis-input to tuple of ints")
82

83
84
85
    if length is not None:
        # shift negative indices to positive ones
        axis = tuple(item if (item >= 0) else (item + length) for item in axis)
86

87
88
89
        # Deactivated this, in order to allow for the ComposedOperator
        # remove duplicate entries
        # axis = tuple(set(axis))
90

91
92
93
        # assert that all entries are elements in [0, length]
        for elem in axis:
            assert (0 <= elem < length)
94

95
96
97
    return axis


98
def parse_domain(domain):
99
    from .domain_object import DomainObject
100
101
    if domain is None:
        domain = ()
102
    elif isinstance(domain, DomainObject):
103
104
105
106
107
        domain = (domain,)
    elif not isinstance(domain, tuple):
        domain = tuple(domain)

    for d in domain:
108
        if not isinstance(d, DomainObject):
109
            raise TypeError(
Martin Reinecke's avatar
Martin Reinecke committed
110
                "Given object contains something that is not an "
111
                "instance of DomainObject-class.")
112
    return domain
Martin Reinecke's avatar
Martin Reinecke committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def slicing_generator(shape, axes):
    """
    Helper function which generates slice list(s) to traverse over all
    combinations of axes, other than the selected axes.

    Parameters
    ----------
    shape: tuple
        Shape of the data array to traverse over.
    axes: tuple
        Axes which should not be iterated over.

    Yields
    -------
    list
        The next list of indices and/or slice objects for each dimension.

    Raises
    ------
    ValueError
        If shape is empty.
    ValueError
        If axes(axis) does not match shape.
    """

    if not shape:
        raise ValueError("ERROR: shape cannot be None.")

    if axes:
        if not all(axis < len(shape) for axis in axes):
            raise ValueError("ERROR: axes(axis) does not match shape.")
        axes_select = [0 if x in axes else 1 for x, y in enumerate(shape)]
        axes_iterables =\
            [list(range(y)) for x, y in enumerate(shape) if x not in axes]
        for current_index in itertools.product(*axes_iterables):
            it_iter = iter(current_index)
            slice_list = [next(it_iter) if use_axis else
                          slice(None, None) for use_axis in axes_select]
            yield slice_list
    else:
        yield [slice(None, None)]
        return

def bincount_axis(obj, minlength=None, weights=None, axis=None):
    if minlength is not None:
        length = max(np.amax(obj) + 1, minlength)
    else:
        length = np.amax(obj) + 1

    if obj.shape == ():
        raise ValueError("object of too small depth for desired array")
    data = obj

    # if present, parse the axis keyword and transpose/reorder self.data
    # such that all affected axes follow each other. Only if they are in a
    # sequence flattening will be possible
    if axis is not None:
        # do the reordering
        ndim = len(obj.shape)
        axis = sorted(cast_axis_to_tuple(axis, length=ndim))
        reordering = [x for x in range(ndim) if x not in axis]
        reordering += axis

        data = np.transpose(data, reordering)
        if weights is not None:
            weights = np.transpose(weights, reordering)

        reord_axis = list(range(ndim-len(axis), ndim))

        # semi-flatten the dimensions in `axis`, i.e. after reordering
        # the last ones.
        semi_flat_dim = reduce(lambda x, y: x*y,
                               data.shape[ndim-len(reord_axis):])
        flat_shape = data.shape[:ndim-len(reord_axis)] + (semi_flat_dim, )
    else:
        flat_shape = (reduce(lambda x, y: x*y, data.shape), )

    data = np.ascontiguousarray(data.reshape(flat_shape))
    if weights is not None:
        weights = np.ascontiguousarray(
                            weights.reshape(flat_shape))

    # compute the local bincount results
    # -> prepare the local result array
    if weights is None:
        result_dtype = np.int
    else:
        result_dtype = np.float
    local_counts = np.empty(flat_shape[:-1] + (length, ),
                            dtype=result_dtype)
    # iterate over all entries in the surviving axes and compute the local
    # bincounts
    for slice_list in slicing_generator(flat_shape,
                                        axes=(len(flat_shape)-1, )):
        if weights is not None:
            current_weights = weights[slice_list]
        else:
            current_weights = None
        local_counts[slice_list] = np.bincount(
                                        data[slice_list],
                                        weights=current_weights,
                                        minlength=length)

    # restore the original ordering
    # place the bincount stuff at the location of the first `axis` entry
    if axis is not None:
        # axis has been sorted above
        insert_position = axis[0]
        new_ndim = len(local_counts.shape)
        return_order = (list(range(0, insert_position)) +
                        [new_ndim-1, ] +
                        list(range(insert_position, new_ndim-1)))
        local_counts = np.ascontiguousarray(
                            local_counts.transpose(return_order))
    return local_counts