field.py 44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from builtins import zip
from builtins import range
22

23
import ast
csongor's avatar
csongor committed
24
25
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
26
27
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29
from .config import nifty_configuration as gc
csongor's avatar
csongor committed
30

Martin Reinecke's avatar
Martin Reinecke committed
31
from .domain_object import DomainObject
32

Martin Reinecke's avatar
Martin Reinecke committed
33
from .spaces.power_space import PowerSpace
csongor's avatar
csongor committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
36
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
37
from functools import reduce
38

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
54
    val : scalar, numpy.ndarray, Field
55
56
57
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
66
    val : numpy.ndarray
Theo Steininger's avatar
Theo Steininger committed
67

68
69
70
71
72
73
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
82

83
    """
84

Theo Steininger's avatar
Theo Steininger committed
85
    # ---Initialization methods---
86

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
87
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
88
        self.domain = self._parse_domain(domain=domain, val=val)
89
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
90

Theo Steininger's avatar
Theo Steininger committed
91
        self.dtype = self._infer_dtype(dtype=dtype,
92
                                       val=val)
93

94
95
96
97
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
98

99
    def _parse_domain(self, domain, val=None):
100
        if domain is None:
101
102
103
104
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
105
        elif isinstance(domain, DomainObject):
106
            domain = (domain,)
107
108
109
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
110
        for d in domain:
111
            if not isinstance(d, DomainObject):
112
113
                raise TypeError(
                    "Given domain contains something that is not a "
114
                    "DomainObject instance.")
csongor's avatar
csongor committed
115
116
        return domain

Theo Steininger's avatar
Theo Steininger committed
117
118
119
120
121
122
123
124
125
126
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
127

128
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
129
        if dtype is None:
130
            try:
131
                dtype = val.dtype
132
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
133
134
135
                try:
                    if val is None:
                        raise TypeError
136
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
137
                except(TypeError):
138
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
139
        else:
140
            dtype = np.dtype(dtype)
141

142
143
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
144
        return dtype
145

146
    # ---Factory methods---
147

148
    @classmethod
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
149
    def from_random(cls, random_type, domain=None, dtype=None, **kwargs):
150
151
152
153
154
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
155

156
157
158
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
159

160
161
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
162

163
164
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
165

166
167
168
169
170
171
172
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
173
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
174

175
176

        """
Theo Steininger's avatar
Theo Steininger committed
177

178
        # create a initially empty field
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
179
        f = cls(domain=domain, dtype=dtype)
180
181
182
183
184
185
186

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
187
        # extract the data from f and apply the appropriate
188
189
190
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
191

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
192
193
194
        sample[:]=generator_function(dtype=f.dtype,
                                             shape=sample.shape,
                                             **random_arguments)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
214
        else:
215
216
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
217

218
        return random_arguments
csongor's avatar
csongor committed
219

220
221
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
222
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
223
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
224
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
225

Theo Steininger's avatar
Theo Steininger committed
226
227
228
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
229
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
230
        field, corresponding to the square root of the power spectrum.
231
232
233

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
234
235
236
237
238
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
239
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
240
241
242
243
244
245
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
246
247
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
248
249
250
251
252
253
254
255
256
257
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
258

259
260
261
262
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
263
264
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
265
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
266

267
268
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
269
        out : Field
Martin Reinecke's avatar
Martin Reinecke committed
270
            The output object. Its domain is a PowerSpace and it contains
271
272
273
274
275
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
276

277
        """
Theo Steininger's avatar
Theo Steininger committed
278

Theo Steininger's avatar
Theo Steininger committed
279
        # check if all spaces in `self.domain` are either harmonic or
280
281
282
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
283
                self.logger.info(
284
                    "Field has a space in `domain` which is neither "
285
286
287
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
288
289
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
290
            spaces = list(range(len(self.domain)))
291
292

        if len(spaces) == 0:
293
294
            raise ValueError(
                "No space for analysis specified.")
295

296
297
298
299
300
301
302
303
304
305
306
307
308
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
309
310

        for space_index in spaces:
311
312
            parts = [self._single_power_analyze(
                                work_field=part,
313
314
315
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
316
317
                                binbounds=binbounds)
                     for part in parts]
318

319
320
321
322
323
324
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
325
326
327

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
328
                              binbounds):
329

330
        if not work_field.domain[space_index].harmonic:
331
332
            raise ValueError(
                "The analyzed space must be harmonic.")
333

334
335
336
337
338
339
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

340
        harmonic_domain = work_field.domain[space_index]
341
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
Theo Steininger's avatar
Theo Steininger committed
342
343
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
344
345
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
346
                                pdomain=power_domain,
347
                                axes=work_field.domain_axes[space_index])
348
349

        # create the result field and put power_spectrum into it
350
        result_domain = list(work_field.domain)
351
        result_domain[space_index] = power_domain
352
        result_dtype = power_spectrum.dtype
353

354
        result_field = work_field.copy_empty(
355
                   domain=result_domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
356
                   dtype=result_dtype)
357
358
359
360
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

361
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
362
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
363

Martin Reinecke's avatar
Martin Reinecke committed
364
365
366
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
367
        if axes is not None:
368
369
370
371
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            axes=axes)
Theo Steininger's avatar
Theo Steininger committed
372

Martin Reinecke's avatar
Martin Reinecke committed
373
        power_spectrum = utilities.bincount_axis(pindex, weights=field_val,
374
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
375
        rho = pdomain.rho
376
377
378
379
380
381
382
383
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

384
    @staticmethod
Martin Reinecke's avatar
Martin Reinecke committed
385
    def _shape_up_pindex(pindex, target_shape, axes):
Theo Steininger's avatar
Theo Steininger committed
386
        semiscaled_local_shape = [1, ] * len(target_shape)
Theo Steininger's avatar
Theo Steininger committed
387
        for i in range(len(axes)):
Martin Reinecke's avatar
Martin Reinecke committed
388
389
            semiscaled_local_shape[axes[i]] = pindex.shape[i]
        local_data = pindex
Theo Steininger's avatar
Theo Steininger committed
390
        semiscaled_local_data = local_data.reshape(semiscaled_local_shape)
Martin Reinecke's avatar
Martin Reinecke committed
391
392
        result_obj = np.empty(target_shape, dtype=pindex.dtype)
        result_obj[:] = semiscaled_local_data
393
394
395

        return result_obj

396
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
397
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
398
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
399

Theo Steininger's avatar
Theo Steininger committed
400
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos    
Martin Reinecke committed
401
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
402

403
404
405
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
406
407
408
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
409
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
410
411
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
412
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
413
414
415
416
417
418
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
419
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
420
421
422
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
423

424
425
426
427
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
428
            stored in the `spaces` in `self`.
429

Theo Steininger's avatar
Theo Steininger committed
430
431
432
433
434
435
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

436
437
438
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
439
440
441
442
443

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

444
        """
Theo Steininger's avatar
Theo Steininger committed
445

446
447
448
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
449
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
450
            spaces = list(range(len(self.domain)))
Theo Steininger's avatar
Theo Steininger committed
451

452
453
454
455
456
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
457
458
459

        # create the result domain
        result_domain = list(self.domain)
460
461
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
462
            harmonic_domain = power_space.harmonic_partner
463
            result_domain[power_space_index] = harmonic_domain
464
465
466

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
467
        if real_power:
468
            result_list = [None]
469
470
        else:
            result_list = [None, None]
471

472
473
        result_list = [self.__class__.from_random(
                             'normal',
474
475
476
                             mean=mean,
                             std=std,
                             domain=result_domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
477
                             dtype=np.complex)
478
479
480
481
482
483
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
484

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
485
        spec = self.val.copy()
486
487
        spec = np.sqrt(spec)

488
489
490
491
492
493
494
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
Martin Reinecke's avatar
Martin Reinecke committed
495
        result_val_list[0] *= local_rescaler.real
496
497

        if not real_power:
Martin Reinecke's avatar
Martin Reinecke committed
498
            result_val_list[1] *= local_rescaler.imag
499

500
        if real_signal:
501
            result_val_list = [self._hermitian_decomposition(
502
503
504
505
506
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
507
                               for result_val in result_val_list]
508
509
510
511
512
513
514

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
515
516
517
            if not issubclass(result_val_list[0].dtype.type,
                              np.complexfloating):
                result = result.real
518
        else:
519
520
521
522
            result = result_list[0] + 1j*result_list[1]

        return result

523
    @staticmethod
524
525
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
526
527
528
529
530
531

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
532
533
        # if no flips at all where performed `h` is a real field.
        # if all spaces use the default implementation of doing nothing when
Theo Steininger's avatar
Theo Steininger committed
534
        # no flips are applied, one can use `is` to infer this case.
535
536

        if flipped_val is val:
Martin Reinecke's avatar
Martin Reinecke committed
537
538
            h = flipped_val.real.copy()
            a = 1j * flipped_val.imag.copy()
539
540
541
542
        else:
            flipped_val = flipped_val.conjugate()
            h = (val + flipped_val)/2.
            a = val - h
543
544

        # correct variance
545
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
546
547
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
548
549
550
            h *= np.sqrt(2)
            a *= np.sqrt(2)

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

587
588
        return (h, a)

589
590
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
591
592
593

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
594
        pindex = power_space.pindex
595
596
597
598

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
Martin Reinecke's avatar
Martin Reinecke committed
599
        local_pindex = pindex
600

601
602
603
604
605
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
606
        # here, the power_spectrum is distributed into the new shape
607
608
        local_rescaler = spec[local_blow_up]
        return local_rescaler
609

Theo Steininger's avatar
Theo Steininger committed
610
    # ---Properties---
611

Theo Steininger's avatar
Theo Steininger committed
612
    def set_val(self, new_val=None, copy=False):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
613
        """ Sets the field's data object.
614
615
616

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
617
        new_val : scalar, array-like, Field, None *optional*
618
619
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
620

621
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
622
623
            If False, Field tries to not copy the input data but use it
            directly.
624
625
626
627
628
629
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
630

631
632
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
633
634
            new_val = new_val.copy()
        self._val = new_val
635
        return self
csongor's avatar
csongor committed
636

637
    def get_val(self, copy=False):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
638
        """ Returns the data object associated with this Field.
639
640
641
642

        Parameters
        ----------
        copy : boolean
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
643
            If true, a copy of the Field's underlying data object
Theo Steininger's avatar
Theo Steininger committed
644
            is returned.
Theo Steininger's avatar
Theo Steininger committed
645

646
647
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
648
        out : numpy.ndarray
649
650
651
652
653
654

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
655

656
657
658
        if self._val is None:
            self.set_val(None)

659
        if copy:
Theo Steininger's avatar
Theo Steininger committed
660
            return self._val.copy()
661
        else:
Theo Steininger's avatar
Theo Steininger committed
662
            return self._val
csongor's avatar
csongor committed
663

Theo Steininger's avatar
Theo Steininger committed
664
665
    @property
    def val(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
666
        """ Returns the data object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
667

668
669
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
670
        out : numpy.ndarray
671
672
673
674
675
676

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
677

678
        return self.get_val(copy=False)
csongor's avatar
csongor committed
679

Theo Steininger's avatar
Theo Steininger committed
680
681
    @val.setter
    def val(self, new_val):
682
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
683

684
685
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
686
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
687

688
689
690
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
691
            The output object. The tuple contains the dimensions of the spaces
692
693
694
695
696
697
698
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
699
700
701
702
703
704
705
706
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
707

708
709
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
710
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
711

Theo Steininger's avatar
Theo Steininger committed
712
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
713

714
715
716
717
718
719
720
721
722
723
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
724

725
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
726
        try:
Martin Reinecke's avatar
Martin Reinecke committed
727
            return int(reduce(lambda x, y: x * y, dim_tuple))
Theo Steininger's avatar
Theo Steininger committed
728
729
        except TypeError:
            return 0
csongor's avatar
csongor committed
730

731
732
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
733
734
735
736
737
738
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
739
740
741
742
743
744
745
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
746
747
748
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
749
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
750
        try:
Theo Steininger's avatar
Theo Steininger committed
751
            return reduce(lambda x, y: x * y, volume_tuple)
752
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
753
            return 0.
754

Theo Steininger's avatar
Theo Steininger committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
        real_part = self.val.real
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
        real_part = self.val.imag
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

Theo Steininger's avatar
Theo Steininger committed
773
    # ---Special unary/binary operations---
774

csongor's avatar
csongor committed
775
    def cast(self, x=None, dtype=None):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
776
        """ Transforms x to an object with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
777

778
779
        Parameters
        ----------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
780
781
782
        x : scalar, numpy.ndarray, Field, array_like
            The input that shall be casted on a numpy.ndarray of the same shape
            like the domain.
Theo Steininger's avatar
Theo Steininger committed
783

784
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
785
            The datatype the output shall have. This can be used to override
Martin Reinecke's avatar
typos    
Martin Reinecke committed
786
            the field's dtype.
Theo Steininger's avatar
Theo Steininger committed
787

788
789
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
790
        out : numpy.ndarray
791
792
793
794
795
796
797
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
798
799
        if dtype is None:
            dtype = self.dtype
800
801
        else:
            dtype = np.dtype(dtype)
802

803
804
        casted_x = x

805
        for ind, sp in enumerate(self.domain):
806
            casted_x = sp.pre_cast(casted_x,
807
808
809
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
810
811

        for ind, sp in enumerate(self.domain):
812
813
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
814

815
        return casted_x
csongor's avatar
csongor committed
816

Theo Steininger's avatar
Theo Steininger committed
817
    def _actual_cast(self, x, dtype=None):
818
        if isinstance(x, Field):
csongor's avatar
csongor committed
819
820
821
822
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
823
        if x is not None:
Martin Reinecke's avatar
more    
Martin Reinecke committed
824
825
            if np.isscalar(x):
                return np.full(self.shape,x, dtype=dtype)
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
826
827
828
            return np.asarray(x, dtype=dtype).reshape(self.shape)
        else:
            return np.empty(self.shape, dtype=dtype)
csongor's avatar
csongor committed
829

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
830
    def copy(self, domain=None, dtype=None):
831
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
832

833
834
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
835
        able to define the domain and the dtype of the returned Field.
836
837
838
839
840

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
841

842
843
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
844

845
846
847
848
849
850
851
852
853
854
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
855

Theo Steininger's avatar
Theo Steininger committed
856
        copied_val = self.get_val(copy=True)
857
858
        new_field = self.copy_empty(
                                domain=domain,
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
859
                                dtype=dtype)
Theo Steininger's avatar
Theo Steininger committed
860
861
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
862

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
863
    def copy_empty(self, domain=None, dtype=None):
864
865
866
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
867
868
869
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
870
        to change the domain and the dtype of the returned Field.
Theo Steininger's avatar
Theo Steininger committed
871

872
873
874
875
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
876

877
878
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
879

880
881
882
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
883
            The output object.
884
885
886
887
888
889

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
890

Theo Steininger's avatar
Theo Steininger committed
891
892
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
893
        else:
Theo Steininger's avatar
Theo Steininger committed
894
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
895

Theo Steininger's avatar
Theo Steininger committed
896
897
898
899
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
900

Theo Steininger's avatar
Theo Steininger committed
901
902
        fast_copyable = True
        try:
Martin Reinecke's avatar
Martin Reinecke committed
903
            for i in range(len(self.domain)):
Theo Steininger's avatar
Theo Steininger committed
904
905
906
907
908
909
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
910
        if (fast_copyable and dtype == self.dtype):
Theo Steininger's avatar
Theo Steininger committed
911
912
            new_field = self._fast_copy_empty()
        else:
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
913
            new_field = Field(domain=domain, dtype=dtype)
Theo Steininger's avatar
Theo Steininger committed
914
        return new_field
csongor's avatar
csongor committed
915

Theo Steininger's avatar
Theo Steininger committed
916
917
918
919
920
921
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
Martin Reinecke's avatar
Martin Reinecke committed
922
        for key, value in list(self.__dict__.items()):
923
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
924
925
                new_field.__dict__[key] = value
            else:
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
926
                new_field.__dict__[key] = np.empty_like(self.val)
Theo Steininger's avatar
Theo Steininger committed
927
928
929
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
930
        """ Weights the pixels of `self` with their invidual pixel-volume.
931
932
933
934

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
935
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
936

937
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
938
939
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
940

Theo Steininger's avatar
Theo Steininger committed
941
942
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
943

944
945
946
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
947
            The weighted field.
948
949

        """
950
        if inplace:
csongor's avatar
csongor committed
951
952
953
954
            new_field = self
        else:
            new_field = self.copy_empty()

955
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
956

957
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
958
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
959
            spaces = list(range(len(self.domain)))
csongor's avatar
csongor committed
960

961
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
962
963
964
965
966
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
967
968

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
969
970
        return new_field

Martin Reinecke's avatar
Martin Reinecke committed
971
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
972
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
973

974
975
976
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed