energy_operators.py 16.4 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
from ..multi_domain import MultiDomain
from ..multi_field import MultiField
from ..sugar import makeDomain, makeOp
Philipp Arras's avatar
Philipp Arras committed
26
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
28
from .sampling_enabler import SamplingDtypeSetter, SamplingEnabler
29
from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
30
from .simple_linear_operators import VdotOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
36


def _check_sampling_dtype(domain, dtypes):
    if dtypes is None:
        return
    if isinstance(domain, DomainTuple):
Philipp Arras's avatar
Philipp Arras committed
37
38
        np.dtype(dtypes)
        return
Philipp Arras's avatar
Philipp Arras committed
39
    elif isinstance(domain, MultiDomain):
Philipp Arras's avatar
Philipp Arras committed
40
41
42
43
44
45
46
        if isinstance(dtypes, dict):
            for dt in dtypes.values():
                np.dtype(dt)
            if set(domain.keys()) == set(dtypes.keys()):
                return
        else:
            np.dtype(dtypes)
Philipp Arras's avatar
Philipp Arras committed
47
            return
Philipp Arras's avatar
Philipp Arras committed
48
    raise TypeError
Philipp Arras's avatar
Philipp Arras committed
49
50


51
52
53
54
def _iscomplex(dtype):
    return np.issubdtype(dtype, np.complexfloating)


Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
62
63
64
65
def _field_to_dtype(field):
    if isinstance(field, Field):
        dt = field.dtype
    elif isinstance(field, MultiField):
        dt = {kk: ff.dtype for kk, ff in field.items()}
    else:
        raise TypeError
    _check_sampling_dtype(field.domain, dt)
    return dt


Martin Reinecke's avatar
Martin Reinecke committed
66
class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
67
    """Operator which has a scalar domain as target domain.
68

Martin Reinecke's avatar
Martin Reinecke committed
69
    It is intended as an objective function for field inference.
70

Philipp Arras's avatar
Philipp Arras committed
71
72
73
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
74
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
75
       divergence.
76
    """
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    _target = DomainTuple.scalar_domain()


80
81
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
82

Philipp Arras's avatar
Philipp Arras committed
83
84
85
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
86
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
87
    """
Philipp Arras's avatar
Philipp Arras committed
88

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    def __init__(self, domain):
        self._domain = domain

Philipp Arras's avatar
Philipp Arras committed
92
    def apply(self, x):
93
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
94
95
        if x.jac is None:
            return x.vdot(x)
Philipp Arras's avatar
Philipp Arras committed
96
97
        res = x.val.vdot(x.val)
        return x.new(res, VdotOperator(2*x.val))
Martin Reinecke's avatar
Martin Reinecke committed
98

Martin Reinecke's avatar
Martin Reinecke committed
99

Martin Reinecke's avatar
Martin Reinecke committed
100
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
101
    """Computes the L2-norm of a Field or MultiField with respect to a
102
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
103
104
105

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
106
107
108

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
109
    endo : EndomorphicOperator
110
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
111
    """
Philipp Arras's avatar
Philipp Arras committed
112
113

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
114
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
115
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
116
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
117
118
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
119

Philipp Arras's avatar
Philipp Arras committed
120
    def apply(self, x):
121
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
122
        if x.jac is None:
Philipp Arras's avatar
Philipp Arras committed
123
124
125
            return 0.5*x.vdot(self._op(x))
        res = 0.5*x.val.vdot(self._op(x.val))
        return x.new(res, VdotOperator(self._op(x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
126

Philipp Arras's avatar
Philipp Arras committed
127

128
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
129
    """Computes the negative log pdf of a Gaussian with unknown covariance.
130

Reimar Leike's avatar
Reimar Leike committed
131
    The covariance is assumed to be diagonal.
132
133

    .. math ::
134
        E(s,D) = - \\log G(s, C) = 0.5 (s)^\\dagger C (s) - 0.5 tr log(C),
135
136

    an information energy for a Gaussian distribution with residual s and
137
    inverse diagonal covariance C.
Reimar Leike's avatar
Reimar Leike committed
138
139
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
140
141
142

    Parameters
    ----------
143
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
144
        domain of the residual and domain of the covariance diagonal.
145

146
    residual_key : key
Philipp Arras's avatar
Philipp Arras committed
147
        Residual key of the Gaussian.
148

149
    inverse_covariance_key : key
150
        Inverse covariance diagonal key of the Gaussian.
Philipp Arras's avatar
Philipp Arras committed
151

152
    sampling_dtype : np.dtype
Philipp Arras's avatar
Philipp Arras committed
153
        Data type of the samples. Usually either 'np.float*' or 'np.complex*'
154
155
    """

Philipp Arras's avatar
Philipp Arras committed
156
    def __init__(self, domain, residual_key, inverse_covariance_key, sampling_dtype):
Philipp Arras's avatar
Philipp Arras committed
157
158
        self._kr = str(residual_key)
        self._ki = str(inverse_covariance_key)
Philipp Arras's avatar
Philipp Arras committed
159
        dom = DomainTuple.make(domain)
Philipp Arras's avatar
Philipp Arras committed
160
        self._domain = MultiDomain.make({self._kr: dom, self._ki: dom})
Philipp Arras's avatar
Philipp Arras committed
161
162
        self._dt = {self._kr: sampling_dtype, self._ki: np.float64}
        _check_sampling_dtype(self._domain, self._dt)
163
        self._cplx = _iscomplex(sampling_dtype)
164

Philipp Arras's avatar
Philipp Arras committed
165
    def apply(self, x):
166
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
167
        r, i = x[self._kr], x[self._ki]
Philipp Arras's avatar
Philipp Arras committed
168
169
170
171
        if self._cplx:
            res = 0.5*r.vdot(r*i.real).real - i.ptw("log").sum()
        else:
            res = 0.5*(r.vdot(r*i) - i.ptw("log").sum())
Martin Reinecke's avatar
more    
Martin Reinecke committed
172
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
173
            return res
Philipp Arras's avatar
Philipp Arras committed
174
175
        met = i.val if self._cplx else 0.5*i.val
        met = MultiField.from_dict({self._kr: i.val, self._ki: met**(-2)})
Philipp Arras's avatar
Philipp Arras committed
176
        return res.add_metric(SamplingDtypeSetter(makeOp(met), self._dt))
177

Martin Reinecke's avatar
Martin Reinecke committed
178
179

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
180
    """Computes a negative-log Gaussian.
181

Philipp Arras's avatar
Philipp Arras committed
182
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
183

Philipp Arras's avatar
Philipp Arras committed
184
185
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
186

Philipp Arras's avatar
Philipp Arras committed
187
188
    an information energy for a Gaussian distribution with mean m and
    covariance D.
189

Philipp Arras's avatar
Philipp Arras committed
190
191
192
193
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
194
195
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
196
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
197
198
199
200
201
202
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
203
    """
Martin Reinecke's avatar
Martin Reinecke committed
204

Philipp Arras's avatar
Philipp Arras committed
205
    def __init__(self, mean=None, inverse_covariance=None, domain=None, sampling_dtype=None):
Martin Reinecke's avatar
Martin Reinecke committed
206
207
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
208
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
209
210
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
214
215
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
216
217
218
219
220
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Philipp Arras's avatar
Philipp Arras committed
221
222
223
224
225
226
227
228
229
230
231

        # Infer sampling dtype
        if self._mean is None:
            _check_sampling_dtype(self._domain, sampling_dtype)
        else:
            if sampling_dtype is None:
                sampling_dtype = _field_to_dtype(self._mean)
            else:
                if sampling_dtype != _field_to_dtype(self._mean):
                    raise ValueError("Sampling dtype and mean not compatible")

232
        if inverse_covariance is None:
233
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Philipp Arras's avatar
Philipp Arras committed
234
            self._met = ScalingOperator(self._domain, 1)
235
            self._trivial_invcov = True
Martin Reinecke's avatar
Martin Reinecke committed
236
        else:
237
            self._op = QuadraticFormOperator(inverse_covariance)
Philipp Arras's avatar
Philipp Arras committed
238
            self._met = inverse_covariance
239
            self._trivial_invcov = False
Philipp Arras's avatar
Philipp Arras committed
240
        if sampling_dtype is not None:
241
            self._met = SamplingDtypeSetter(self._met, sampling_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
242
243

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
244
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
245
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
246
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
247
        else:
Philipp Arras's avatar
Philipp Arras committed
248
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
249
250
                raise ValueError("domain mismatch")

Philipp Arras's avatar
Philipp Arras committed
251
    def apply(self, x):
252
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
253
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
254
        res = self._op(residual).real
Martin Reinecke's avatar
more    
Martin Reinecke committed
255
        if x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
256
257
            return res.add_metric(self._met)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
258

Philipp Arras's avatar
Philipp Arras committed
259
260
261
262
    def __repr__(self):
        dom = '()' if isinstance(self.domain, DomainTuple) else self.domain.keys()
        return f'GaussianEnergy {dom}'

Martin Reinecke's avatar
Martin Reinecke committed
263
264

class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
265
266
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
267

Philipp Arras's avatar
Philipp Arras committed
268
    Represents up to an f-independent term :math:`log(d!)`:
269

Philipp Arras's avatar
Philipp Arras committed
270
271
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
272

Philipp Arras's avatar
Philipp Arras committed
273
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
274
    the counts.
Philipp Arras's avatar
Philipp Arras committed
275
276
277
278
279
280

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
281
    """
Philipp Arras's avatar
Philipp Arras committed
282

283
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
284
285
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
286
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
287
            raise ValueError
288
289
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
290

Philipp Arras's avatar
Philipp Arras committed
291
    def apply(self, x):
292
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
293
        res = x.sum() - x.ptw("log").vdot(self._d)
Martin Reinecke's avatar
more    
Martin Reinecke committed
294
        if not x.want_metric:
295
            return res
296
        return res.add_metric(SamplingDtypeSetter(makeOp(1./x.val), np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
297

298

299
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
300
    """Computes the negative log-likelihood of the inverse gamma distribution.
301
302
303

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
304
305
306
307
308
309
310
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
311
312
313
314
315
316
317

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
318
    """
Philipp Arras's avatar
Philipp Arras committed
319

320
321
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
322
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
323
        self._domain = DomainTuple.make(beta.domain)
324
325
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
326
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
327
328
329
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
Philipp Arras's avatar
Philipp Arras committed
330
331
332
333
        if not self._beta.dtype == np.float64:
            # FIXME Add proper complex support for this energy
            raise TypeError
        self._sampling_dtype = _field_to_dtype(self._beta)
334

Philipp Arras's avatar
Philipp Arras committed
335
    def apply(self, x):
336
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
337
        res = x.ptw("log").vdot(self._alphap1) + x.ptw("reciprocal").vdot(self._beta)
Martin Reinecke's avatar
more    
Martin Reinecke committed
338
        if not x.want_metric:
339
            return res
Philipp Arras's avatar
Philipp Arras committed
340
341
        met = makeOp(self._alphap1/(x.val**2))
        if self._sampling_dtype is not None:
342
            met = SamplingDtypeSetter(met, self._sampling_dtype)
Philipp Arras's avatar
Philipp Arras committed
343
        return res.add_metric(met)
344
345


346
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
347
    """Computes likelihood energy corresponding to Student's t-distribution.
348
349

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
350
351
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
352

Philipp Arras's avatar
Philipp Arras committed
353
354
    where f is a field defined on `domain`. Assumes that the data is `float64`
    for sampling.
355
356
357

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
358
359
    domain : `Domain` or `DomainTuple`
        Domain of the operator
Reimar Leike's avatar
Reimar Leike committed
360
    theta : Scalar or Field
361
362
363
        Degree of freedom parameter for the student t distribution
    """

Philipp Arras's avatar
Philipp Arras committed
364
    def __init__(self, domain, theta):
365
366
367
        self._domain = DomainTuple.make(domain)
        self._theta = theta

Philipp Arras's avatar
Philipp Arras committed
368
    def apply(self, x):
369
        self._check_input(x)
370
        res = (((self._theta+1)/2)*(x**2/self._theta).ptw("log1p")).sum()
Martin Reinecke's avatar
more    
Martin Reinecke committed
371
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
372
            return res
373
        met = makeOp((self._theta+1) / (self._theta+3), self.domain)
Philipp Arras's avatar
Philipp Arras committed
374
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
375
376


Martin Reinecke's avatar
Martin Reinecke committed
377
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
378
    """Computes likelihood energy of expected event frequency constrained by
379
380
    event data.

Philipp Arras's avatar
Philipp Arras committed
381
382
383
384
385
386
387
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

388
389
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
390
    d : Field
Philipp Arras's avatar
Philipp Arras committed
391
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
392
    """
Philipp Arras's avatar
Philipp Arras committed
393

394
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
395
396
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
397
        if np.any(np.logical_and(d.val != 0, d.val != 1)):
Philipp Arras's avatar
Philipp Arras committed
398
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
399
        self._d = d
400
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
401

Philipp Arras's avatar
Philipp Arras committed
402
    def apply(self, x):
403
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
404
        res = -x.ptw("log").vdot(self._d) + (1.-x).ptw("log").vdot(self._d-1.)
Martin Reinecke's avatar
more    
Martin Reinecke committed
405
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
406
            return res
Philipp Arras's avatar
Philipp Arras committed
407
        met = makeOp(1./(x.val*(1. - x.val)))
408
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
409
410


411
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
412
413
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
414

Philipp Arras's avatar
Philipp Arras committed
415
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
416

Philipp Arras's avatar
Philipp Arras committed
417
418
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
419

Martin Reinecke's avatar
Martin Reinecke committed
420
    Other field priors can be represented via transformations of a white
421
422
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
423
    By implementing prior information this way, the field prior is represented
424
425
426
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
427
428
429
430
431
432
433
434
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
435
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
436
        to use to draw Gaussian samples.
Philipp Arras's avatar
Philipp Arras committed
437
438
    prior_dtype : numpy.dtype or dict of numpy.dtype, optional
        Data type of prior used for sampling.
Philipp Arras's avatar
Philipp Arras committed
439
440
441
442
443

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
444
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
445
    """
Philipp Arras's avatar
Philipp Arras committed
446

Philipp Arras's avatar
Philipp Arras committed
447
    def __init__(self, lh, ic_samp=None, _c_inp=None, prior_dtype=np.float64):
Martin Reinecke's avatar
Martin Reinecke committed
448
        self._lh = lh
Philipp Arras's avatar
Philipp Arras committed
449
        self._prior = GaussianEnergy(domain=lh.domain, sampling_dtype=prior_dtype)
450
451
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
452
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
453
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
454

Philipp Arras's avatar
Philipp Arras committed
455
    def apply(self, x):
456
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
457
        if not x.want_metric or self._ic_samp is None:
Philipp Arras's avatar
Philipp Arras committed
458
            return (self._lh + self._prior)(x)
Philipp Arras's avatar
Philipp Arras committed
459
460
        lhx, prx = self._lh(x), self._prior(x)
        return (lhx+prx).add_metric(SamplingEnabler(lhx.metric, prx.metric, self._ic_samp))
Martin Reinecke's avatar
Martin Reinecke committed
461

Philipp Arras's avatar
Philipp Arras committed
462
463
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
464
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
465
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
466

467
468
469
470
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
471

Martin Reinecke's avatar
Martin Reinecke committed
472
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
473
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
474

475
476
477
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
478
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
479
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
480
481
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
482

Philipp Arras's avatar
Docs    
Philipp Arras committed
483
484
485
486
487
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
488

Philipp Arras's avatar
Docs    
Philipp Arras committed
489
490
491
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
492
    """
Martin Reinecke's avatar
Martin Reinecke committed
493
494
495

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
496
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
497
498
        self._res_samples = tuple(res_samples)

Philipp Arras's avatar
Philipp Arras committed
499
    def apply(self, x):
500
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
501
502
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap)/len(self._res_samples)