energy_operators.py 7.42 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
19
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
20
21
from ..field import Field
from ..linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
22
from ..sugar import makeOp, makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
23
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
24
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
25
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
26
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29


class EnergyOperator(Operator):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    """ NIFTy class for Energy operators.

    The  NIFTy EnergyOperator class derives from the Operator class.

    An EnergyOperators transforms a field into a scalar, the information energy
    of the field. Typically, an EnergyOperators is an information Hamiltonian
    ( = negative log probability) or a Gibbs free energy ( = averaged 
    Hamiltonian), aka Kullbach-Leibler divergence. 
    
    An EnergyOperator can also provide its gradient as an EndomorphicOperator 
    that converts a field into a field, the gradient of the Hamiltonian at the 
    field location. 
    """
    # TE FIXME: find out and document how gradient and metric are invoked
Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
48
49
50
51
52
53
54
    """ NIFTy class for a squared norm energy.

    The  NIFTy SquaredNormOperator class derives from the EnergyOperator class.

    A SquaredNormOperator represents a field energy E that is the L2 norm of a 
    field f: E = f^dagger f
    """   
Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
58
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
59
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
60
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
61
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
62
            jac = VdotOperator(2*x.val)(x.jac)
63
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
64
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
65
66
67


class QuadraticFormOperator(EnergyOperator):
68
69
70
71
72
73
74
    """ NIFTy class for quadratic field energies.

    The  NIFTy QuadraticFormOperator derives from the EnergyOperator class.

    It represents a field energy E that is a quadratic form of a field f with 
    kernel op: E = f^dagger op f /2 
    """      
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
79
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
80
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
81
82

    def apply(self, x):
83
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
84
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
85
86
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
87
            val = Field.scalar(0.5*x.val.vdot(t1))
88
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
89
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
111
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
112
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
113
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
114
        else:
Philipp Arras's avatar
Philipp Arras committed
115
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
116
117
118
                raise ValueError("domain mismatch")

    def apply(self, x):
119
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
120
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
121
        res = self._op(residual).real
122
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
126
127
128
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
129
130
131
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
132
133

    def apply(self, x):
134
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
135
136
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
137
            return Field.scalar(res)
138
139
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

143

144
class InverseGammaLikelihood(EnergyOperator):
145
146
147
    def __init__(self, d):
        self._d = d
        self._domain = DomainTuple.make(d.domain)
148
149

    def apply(self, x):
150
        self._check_input(x)
Philipp Frank's avatar
Philipp Frank committed
151
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
152
153
        if not isinstance(x, Linearization):
            return Field.scalar(res)
154
155
        if not x.want_metric:
            return res
156
157
158
159
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
160
class BernoulliEnergy(EnergyOperator):
161
    def __init__(self, d):
Martin Reinecke's avatar
Martin Reinecke committed
162
        self._d = d
163
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
164
165

    def apply(self, x):
166
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
167
168
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
169
            return Field.scalar(v)
170
171
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
172
173
174
175
176
177
178
179
180
181
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
182
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
183
184

    def apply(self, x):
185
        self._check_input(x)
186
187
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
188
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
189
        else:
190
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
191
192
193
194
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)

Philipp Arras's avatar
Philipp Arras committed
195
196
197
198
199
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
        subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys())
        return 'Hamiltonian:\n' + utilities.indent(subs)

Martin Reinecke's avatar
Martin Reinecke committed
200
201
202
203
204
205
206
207
208

class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
209
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
210
211
212
        self._res_samples = tuple(res_samples)

    def apply(self, x):
213
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
214
215
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))