rg_space.py 12.5 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
51
52
53
54
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
55
56
57
58
        zerocenter : {bool, numpy.ndarray} *optional*
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
            (default: False).
Theo Steininger's avatar
Theo Steininger committed
59
60
61
62
63
64
65
66
67
68
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
69
            (default: False).
Marco Selig's avatar
Marco Selig committed
70
71
72

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
73
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
74
75
76
77
78
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
79
80
81
82
83
84
85
86
87
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
88

Marco Selig's avatar
Marco Selig committed
89
90
    """

91
92
    # ---Overwritten properties and methods---

93
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
94
                 harmonic=False):
95
96
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
97
        super(RGSpace, self).__init__()
98

99
100
101
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
102

103
104
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
108
109
110
        # check axes
        if axes is None:
            axes = range(len(x.shape))
        assert len(x.shape) >= len(self.shape), "shapes mismatch"
        assert len(axes) == len(self.shape), "axes mismatch"

111
112
113
114
115
116
117
118
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
119
        anti_hermitian_part = (x-hermitian_part)
120
121
122
123
124
125
126

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

127
128
        return (hermitian_part, anti_hermitian_part)

129
130
131
132
133
134
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

135
136
137
138
139
140
141
142
143
144
145
146
        # If the dtype of the input is complex, the fixed points lose the power
        # of their imaginary-part (or real-part, respectively). Therefore
        # the factor of sqrt(2) also applies there
        if not issubclass(hermitian_part.dtype.type, np.complexfloating):
            # The fixed points of the point inversion must not be averaged.
            # Hence one must divide out the sqrt(2) again
            # -> Get the middle index of the array
            mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
            dimensions = mid_index.size
            # Use ndindex to iterate over all combinations of zeros and the
            # mid_index in order to correct all fixed points.

Martin Reinecke's avatar
Martin Reinecke committed
147
148
            ndlist = [2 if i in axes and self.shape[i] % 2 == 0
                      else 1 for i in xrange(dimensions)]
149
150
151
152
153
            ndlist = tuple(ndlist)
            for i in np.ndindex(ndlist):
                temp_index = tuple(i * mid_index)
                hermitian_part[temp_index] /= np.sqrt(2)
                anti_hermitian_part[temp_index] /= np.sqrt(2)
154
155
        return hermitian_part, anti_hermitian_part

156
157
    def _hermitianize_inverter(self, x, axes):
        # calculate the number of dimensions the input array has
Martin Reinecke's avatar
Martin Reinecke committed
158
        dimensions = len(x.shape)
159
160
161
162
163
164
165
166
167
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
            slice_inverter = slice_primitive[:]
Martin Reinecke's avatar
Martin Reinecke committed
168
            if self.zerocenter[i] is False or self.shape[i] % 2 == 0:
Martin Reinecke's avatar
Martin Reinecke committed
169
                slice_picker[i] = slice(1, None, None)
170
171
                slice_inverter[i] = slice(None, 0, -1)
            else:
Martin Reinecke's avatar
Martin Reinecke committed
172
                slice_picker[i] = slice(None)
173
                slice_inverter[i] = slice(None, None, -1)
Martin Reinecke's avatar
Martin Reinecke committed
174
            slice_picker = tuple(slice_picker)
175
176
177
            slice_inverter = tuple(slice_inverter)

            try:
Martin Reinecke's avatar
Martin Reinecke committed
178
179
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
180
181
182
183
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

184
185
    # ---Mandatory properties and methods---

186
187
188
189
    def __repr__(self):
        return ("RGSpace(shape=%r, zerocenter=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.zerocenter, self.distances, self.harmonic))

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
210
                              harmonic=self.harmonic)
211
212

    def weight(self, x, power=1, axes=None, inplace=False):
213
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
214
215
216
217
218
219
220
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

221
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
222
223
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
224

Theo Steininger's avatar
Theo Steininger committed
225
226
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
227
228
229
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
theos's avatar
theos committed
230

Theo Steininger's avatar
Theo Steininger committed
231
232
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
233
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
234
235
            A d2o containing the distances.

theos's avatar
theos committed
236
        """
Theo Steininger's avatar
Theo Steininger committed
237

theos's avatar
theos committed
238
239
240
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
241
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
242
243
244
245
246
247
248
249
250
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
251
252
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

268
269
        dists = (cords[0] - shape[0]//2)*dk[0]
        dists *= dists
theos's avatar
theos committed
270
        # apply zerocenterQ shift
271
272
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
273
274
275
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
276
277
            temp = (cords[ii] - shape[ii] // 2) * dk[ii]
            temp *= temp
278
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
279
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
280
281
282
283
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

284
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
285
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
theos's avatar
theos committed
286

287
288
289
290
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
291
292
293
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
294
        """
Theo Steininger's avatar
Theo Steininger committed
295

296
297
298
299
        return self._distances

    @property
    def zerocenter(self):
300
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
301

302
303
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
304
305
306
307
308
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

309
        """
Theo Steininger's avatar
Theo Steininger committed
310

311
312
313
314
315
316
317
318
319
320
321
322
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
323
                temp = np.ones_like(self.shape, dtype=np.float64)
324
            else:
Martin Reinecke's avatar
Martin Reinecke committed
325
                temp = 1 / np.array(self.shape, dtype=np.float64)
326
        else:
Martin Reinecke's avatar
Martin Reinecke committed
327
            temp = np.empty(len(self.shape), dtype=np.float64)
328
329
330
331
332
333
334
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
335
336
337
338

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
339
340
341
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
342
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
343

344
345
346
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
347
    def _from_hdf5(cls, hdf5_group, repository):
348
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
349
350
351
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
352
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
353
            )
354
        return result